(3.239.192.241) 您好!臺灣時間:2021/03/02 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李曉燕
研究生(外文):Haiso Yen Li
論文名稱:聚苯胺寡聚物及其導電性摻合物之合成與性質研究
論文名稱(外文):Synthesis, Characterization and Properties Oligoanilines and Conductive Polyblends
指導教授:芮祥鵬芮祥鵬引用關係王立義
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:1
中文關鍵詞:聚苯胺寡聚物聚苯胺聚摻聚甲基丙基酸酯摻雜導電高分子
外文關鍵詞:polyanilineoligoanilinepolyblendpolyurethanedopingconductive polymer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:842
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們以苯胺二聚物為單體利用氧化劑FeCl3‧6H2O合成苯胺四聚物,然後在酸性水溶液中以(NH4)2S2O8氧化聚合而形成苯胺寡聚物(oligoaniline),製備之產物則利用GPC和MALDI技術來探討它們的分子量特性。結果顯示苯胺四聚物為單一分子量分佈的產物,但經(NH4)2S2O8氧化聚合之苯胺寡聚物則為鏈長分別為4、8、12、16及20重覆單位的組成物。
合成之苯胺寡聚物混合物則利用脂肪萃取裝置,分別使用ether及acetonitrile當作沖洗溶劑加以純化,由GPC層析結果可明顯發現ether無法有效的除去苯胺四聚物起始反應物,相對地,若使用acetonitrile為清洗溶劑則可將過量的苯胺四聚物完全去除。另外,若將苯胺寡聚物在乙醇中以無水聯胺(hydrazine)進行還原反應,則可明顯增加其在有機溶劑中的溶解度,並可進一步有效地除去八及十二聚物,在GPC層析圖上形成以十六聚物為主的吸收峰。
且為了探討寡聚苯胺的氧化還原程度,我們將經過無水聯胺(hydrazine)還原劑還原的苯胺十六聚物,再利用(NH4)2S2O8(ammomium persulfate)進行不同程度的氧化,且將不同氧化程度之產物進行GPC偵測,由圖中發現隨著氧化程度愈大其訊號在較低分子量提高,且在滯留時間17.8及20.8分鐘有凝集(aggregation)現象發生,此種現象因分子間氫鍵所造成,並且可由LiCl去除。
且在本研究中選用不同之質子酸(DBSA、CSA)與苯胺寡聚物進行摻雜(Doping),且可藉由紫外光光譜得知摻雜效應及其性質。又因為Polyaniline其溶解度差、剛性強造成不易加工,因此在本研究中合成出具有柔軟性的高分子Polyurethane來改善其缺點,則polyurethane之相對分子量Mn=55454。因此將Polyurethane和導電性材料以溶液混合法進行摻混(polyblends),以改善hexadecaaniline之機械性質與延展性。
In this study, oligoaniline were prepared by two-step methed. Firstly, tetraaniline was synthesized by using dianiline as monomer and FeCl3.6H2O as oxidant. Then hexadecaaniline was obtained from the oxidation polymerization of tetraaniline in the acid solution by the use of [NH4]2S2O8 as oxidant. The molecular characteristic of thus prepared oligoanilines were investigated by both GPC and MALDI-Mass techniques. The results showed the molecular weight of tetraaniline was monodisperse and hexadecaaniline was the mixture of the chain length of 4, 8, 12, 16, 20 units.
After the polymerization reaction, either ether or acetonitrile was utilized to purify the oligoaniline products. GPC chromatograms shows only ether is not enough to remove the excess reactant of tetraaniline. Oppositely, acetonitrile is a good washing to eliminate the excess amount of tetraaniline completely. Moveover, GPC date shows the adsorption peak became sharp when the hexadecaaniline was reduced by hydrazine in ethanol.
In order to study the degree of redox of oligoanilines on their solvent solubity and optical properties, a aeres of varying redox states of hexadecaaniline were prepared by adding various amount of hydrazine as reductant or [NH4]2S2O8 as oxidant. The experimental results indicate the signal from the lower molecular weight and from the intermolecular aggregation at the retention time of 17.8 and 20.8 min increase with increasing level of oxidation. This aggregation is caused by the intermolecular hydrogen bonding and can be eliminated by adding certain amount of LiCl. Furthermore, DBSA and CSA were choosen as dopants. The electronic properties of the resulted emeraldine salts were studied by the use of UV/Vis instrument.
Polyaniline is generally categorized as a rigid and infusible materials. In this project, oligoanilines were blended with polyurethane to make conductive elastomers. The linear polyurethane were preparaed from the condensation reaction of PTMO-based isocyanated-capped prepolymers with 1.4-butandiol. The molecular weigh of polyurethane is determined by GPC to be Mn=55,454 with a polydispersity of 1.53. Finally, we use the four-probe methed to measure the conductivity of these conductive polyblends, and the conductivity percolation threshold was found to be around 5.0wt% of oligoaniline.
摘要…………………………………………………………………………………I
誌謝…………………………………………………………………………………IV
目次………………………………………………………………………………….V
表目錄………………………………………………………………………………VII
圖目錄………………………………………………………………………………VIII
第一章 緒論…………………………………………………………………………1
1.1 前言…………………………………………………………………………...1
1.2 導電高分子…………………………………………………………………...1
1.2-1 導電性高分子之結構與導電理論……………………………………1
1.2-2 導電高分子之應用及特性……………………………………………5
1.3 研究背景及目的……………………………………………………………..10
第二章 實驗方法…………………………………………………………………...19
2.1 藥品…………………………………………………………………………..19
2.2 Polyurethane之聚合反應 …………………………………………………...19
2.3 Oligoaniline 之聚合反應……………………………………………………..21
2.4 Hexadecaaniline之Emeraldine salt與各種質子酸摻雜之製備…………….22
2.5 Hexadecaaniline基導電性摻合物之合成……………………………………22
2.6儀器測量………………………………………………………………………22
第三章 結果與分析討論……………………………………………………………26
3.1 Hexadecaaniline之合成與分析討論…………………………………………26
3.2 質子酸種類對於Hexadecaaniline之物性影響研究………………………..30
3.3 Polyurethane之合成與分析…………………………………………………..31
3.4 寡聚物聚苯胺/Polyurethane polyblends之分析…………………………….33
第四章 結論…………………………………………………………………………34
第五章 參考文獻……………………………………………………………………35
(1) Wolfgang H. Meyer., Adv. Mater. 10 (1998) No6。
(2)H. Shirakawa, E. J. Lonis, A. G. Macdiarmid, C. k.Chiang and A. J. Heeger,
J. Chem. Soc. Chem. Comm. (1977) 579。
(3) T. Ito, H. Shirakawa and S. Ikeda, J. Polymer. Sci., Polym. Chem. Ed. 12 (1974) 11。
(4) C. K. Chiang, C. R.. Fischer, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Ganand A. G. Macdiarmid, Phys. Rev. LETT. 39 (1977) 1098。
(5) W. J. Feast, J. Tsibouklis, K. L. Pouwer, L. Gronendaal, and E. W. Meijer, Polymer 37 (1996) 5017。
(6) L. S. Yang, Z. Q. Shan, P. M. Hou, W. X. Chen and L. Lin J. Power. Sources, 44 (1993) 499。
(7) H. Letheby, J. Chem. Soc., 15 (1862) 161。
(8) T. Osaka, K. Naoiand, T. Hirabayashi, J. Electrochem. Soc. 134 (1990) 2645。
(9) M. Morita, Makromol. Chem., 194 (1993) 1513。
(10) M. Morita, Makromol. Chem., 194 (1993) 2361。
(11) M.Morita, J. Polym. Sci., Polym. Phys., 32 (1994) 231。
(12) M. Morita, and I. Hashida, Markromol. Chem., 193 (1992) 921。
(13) 陳壽安, 化工, 38 (1992) 98。
(14) J. H. Burroughes, Nature 347 (1990) 593。
(15) D. Braun, & A. J. Heeger, Appl. Phys. Lett. 58 (1991) 1982。
(16) G. Gustaffsson, Nature 357 (1992) 477。
(17) R. E. Gill, G. G. Malliaras, J. Wildenan, & G. Hadziioannou, Adv. Mater. 6 (1994)132。
(18) A. G. Green, and A. E. Woodhead, J. Chem. Soc. Trans. 97 (1910) 2388。
(19) S. S. Pandey, S. Annapoorni, and B. D. Malhocra, Macromolecules,
26 (1993) 3190。
(20) Y. Cao. Synth. Met., 48 (1992) 91。
(21) Y. Cao, P. Smith and A. J. Heeger, Synth. Met., 48 (1992) 81。
(22) Y. Cao, Smith and A. J. Heeger, Appl. Phys. Lett., 60 (1992) 2711。
(23) R. V. Gregory, W. C. Kimrell and H. H. Kuhn, Synth. Met., 28 (1989) C823。
(24) E. M. Genies, C. Petrescu and L. Olmedo., Synth. Met., 41 (1991) 665。
(25) M. Angelopoulos, N. Patel, and R. Saraf, Synth. Met.,55 (1993) 1552。
(26) M. Thangarathinarelu, A. K. Tripathi, T. C. Goel, and I. K. Varma, J. Appl. Polym. Sci., 51 (1994) 1347。
(27) Pajik. Paul, C. K. S. Pillai., Synth. Met., 114 (2000) 27。
(28) B. Wessling and H. Volk., Synth. Met., 18 (1987) 671。
(29) M. A. Paoli, Ber., 40 (1907) 2665。
(30) L. W. Shacklette, C. C. Han, and M. H. Luly Synth. Met.,57 (1993) 3532。
(31) P. Rannou, A. Gaw licka, D. Berner, M. Nechtschein, acromolecules 31 (1998) 3007。
(32) P. N. Adams, P. Devasagayam, S. J. Pomfret, L. Abell, A. Moukman, J. Phys.Condens. Matter., 10 (1998) 8293。
(33) Macromolecules.,33 (2000) 2107。
(34) R. Willstatter and C. W. Moore, Ber., 40 (1907) 2665。
(35) J. Honzl and M. Tlustakova, J. Polym. Sci. Pant C, 22 (1968) 451。
(36) Y. Wei, C. Yang and T. Ding, Tetrahedral. Letts., 37 (1996) 731。
(37) W. J. Zhang, J. Feng, A. G. Macdiarmid and A. J. Epstein., Synth. Met.,
84 (1997) 119。
(38) Prog. Quant. Electr., 19 (1995) P131。
(39) C. Hepburn, “Polyurethane Elastomers”, (1982)。
(40) O. Vogl, “Polyurethane Elastomers” Progress in Polymer Science” (1991)。
(41) S. Petrovic oran, James, Ferglson, “Progress in Polymer Science “(Oxford) V16, n5. Oct (1991)。
(42) K. C. Frish and S. L. Reegeu, “Advances in Urethane Science and Technology”, 12 (1973) P29。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔