跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊國彬
研究生(外文):Kuo-Pin Chuang
論文名稱:結合灰色與模糊理論在負載預測之應用
論文名稱(外文):Load Forecasting by Combination of Grey and Fuzzy Theory
指導教授:李清吟李清吟引用關係
指導教授(外文):Ching-Yin Lee
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:負載預測迴歸分析灰色系統理論模糊推論
相關次數:
  • 被引用被引用:20
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:3
本論文旨在預測尖峰負載與離峰負載,並利用預測的尖峰負載與離峰負載,描繪出完整二十四小時日負載曲線,提早預知次日至一星期的系統負載,可作為在機組排程、負載管理、經濟調度、水力火力機組協調及電力系統安全控制等方面,提供極重要的參考數據。所以負載預測的準確性,直接影響到系統發電成本及運轉可靠度與安全性。本論文針對電力系統運轉調度時所面臨的短期負載預測問題,以工作日及非工作日為區分,提出結合灰色系統理論與模糊推論之預測方法。
在工作日預測作法:首先利用多重迴歸分析對尖峰負載與離峰負載進行初步預測,接著加入灰色GM(0,2)模型降低預測之誤差,同時為了更準確預測尖峰負載與離峰負載,利用模糊推論技術修正負載偏差量,以達到最準確的尖峰負載與離峰負載預測。
在非工作日預測作法:利用GM(1,1)只要四筆以上資料即可建模的優點,對非工作日的尖峰負載與離峰負載進行初步預測。然後利用模糊推論進行與實際尖峰負載與離峰負載值差距的修正,以達到最準確的尖峰負載與離峰負載預測。
為了驗証本論文所提出方法之優越性,使用台電公司的實際資料進行預測,並且與傳統迴歸分析、GM(1,1)、模糊推論等方法作比較,結果証明本論文所提方法在工作日及非工作日的尖載、低載與二十四小時負載預測準確性都較其它預測方法準確。
摘要i
Abstract ii
誌謝 iii
目次 iv
表目次vii
圖目次 x
第一章緒論1
1.1研究動機與目的1
1.2文獻回顧 2
1.3論文內容概述4
第二章 迴歸分析理論5
2.1兩變數間之關係5
2.1.1函數關係5
2.1.2統計關係5
2.2迴歸模型及其運用7
2.2.1獨立變數的選定8
2.2.2迴歸方程式的函數型式8
2.3迴歸分析之數學模型9
2.3.1簡單線型迴歸模型9
2.3.2最小平方法9
2.3.3多重迴歸模型10
2.3.4迴歸模型之矩陣表示式10
2.3.5迴歸參數之估計12
第三章 灰色系統基本理論及運算13
3.1前言..13
3.2灰色生成14
3.2.1累加生成14
3.2.2累減生成15
3.3灰色建模17
3.4灰色預測17
3.5灰色微分方程式17
3.5.1GM(1,N)模型18
3.5.2GM(1,1)模型19
3.5.3後驗差檢驗法21
3.5.4GM(0,N)模型23
第四章 模糊理論25
4.1簡介..25
4.2模糊集合的基本概念26
4.2.1模糊集合的定義26
4.2.2歸屬函數28
4.3模糊集合的基本運算31
4.4模糊集合關係33
4.5模糊推論34
4.6解模糊化36
4.7模糊理論之推論技術流程40
第五章 實際系統之預測方法建立與結果比較42
5.1前言..42
5.2本論文採用的預測方法42
5.2.1預測資料收集42
5.2.2尖載與低載預測43
5.2.324小時之負載預測43
5.3工作日預測方法建立44
5.3.1輸入資料44
5.3.2多重迴歸分析法45
5.3.3GM(0,2)方法49
5.3.4結合模糊推論技術於工作日預測51
5.3.5實例測試與分析55
5.4非工作日預測方法建立77
5.4.1輸入資料77
5.4.2GM(1,1)方法78
5.4.3結合模糊推論技術於非工作日預測78
5.4.4實例測試與分析80
5.5本章結論101
第六章 結論及未來研究方向102
6.1結論..102
6.2未來研究方向103
參考文獻104
作者簡介108
1.H.P. Van Meeteren and P.J. M Van Son, “Short-term load prediction with a combination of different models,” IEEE Proc. PICA, vol. 79, pp. 190-197, 1979.
2.R.P. Thompson, “Weather sensitive demand and energy analysis on a large geographically diverse power system─application to short-term hourly electric demand forecasting,” IEEE Trans. PAS, vol. 95, pp. 384-393, 1976.
3.P.C. Gupta and K. Yamada, “Adaptive short-term forecasting of hourly loads using weather information,” Paper 72 WM T72-170-4 PES, presented at the IEEE/PES 1972 Winter Meeting.
4.D.W. Ross, et al., “Short-term load prediction for economic dispatch of generation,” IEEE Proc. PICA, vol. 79, pp. 198-204, 1979.
5.M. Hagan and R. Klein, “On-line maximum likelihood estimation for load forecasting,” IEEE Trans. SMC, vol. 8, no. 9, pp. 711-715, 1978.
6.A. Keyhani and T. E. Rad, “A simulation study for recursive prediction of hourly demands,” IEEE Proc. PICA, pp. 228-236, 1977.
7.T. Onoda, “Next day peak load forecasting using an artificial neural network with modified backpropagation learning algorithm,” IEEE Proc. Neural Networks, vol. 6, pp. 3766-3769, 1994.
8.T. Onoda, “Next day''''''''s peak load forecasting using an artificial neural network,” IEEE Proc. ANNPS, pp. 284 —289, 1993.
9.S.S. Sharif and J.H. Taylor, “Real-time load forecasting by artificial neural networks,” IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 496 —501, 2000.
10.J.K. Mandal and A.K. Sinha, “Artificial neural network based hourly load fore- casting for decentralized load management,” IEEE Proc. EMPD, vol. 1, pp. 61 —66, 1995.
11.H.T. Yang, T.C. Liang, K.R. Shih and C.L. Huang, “Power system yearly peak load forecasting: a grey system modeling approach,” IEEE Proc. EMPD, vol. 1, pp. 261 —266, 1995.
12.S.J. Kiartzis, A.G. Bakirtzis, J.B. Theocharis and Gr. Tsagas, “A fuzzy expert system for peak load forecasting. application to the greek power system,” IEEE Proc. MELECON, vol. 3, pp. 1097-1100, 2000.
13.H. Mori and Y. Sone, “A simplified fuzzy inference method with tabu search for short-term load forecasting in power systems,” IEEE Proc. Decision and Control, vol. 4, pp. 4240-4245, 1998.
14.H. Mori, Y. Sone, D. Moridera and T. Kondo, “Fuzzy inference models for short-term load forecasting with tabu search,” IEEE Proc. SMC, vol. 6, pp. 551-556, 1999.
15.H. Mori and H. Kobayashi, “Optimal fuzzy inference for short-term load forecasting,”, IEEE Tran. Power Systems, vol. 11, no. 1, pp. 390-396, 1996.
16.Mo-yuen Chow and Hahn Tram, “Application of fuzzy logic technology for spatial load forecasting,” IEEE Proc. Transmission and Distribution, pp. 608-614, 1996.
17.Y.Y. Hsu and K.L. Ho, “Fuzzy expert systems: an application to short-term load forecasting,” IEE Proc. Generation, Transmission and Distribution, vol. 139, no. 6, pp. 471-477, 1992.
18.G. Lambert-Torres, C.O. Traore, F.G. Mandolesi and D. Mukhedkar, “Short-term load forecasting using a fuzzy engineering tool,” IEEE Proc. ANNPS, pp. 36-40, 1991.
19.R.H. Liang and C.C. Cheng, “Combined regression-fuzzy approach for short-term load forecasting,” IEE Proc. Generation, Transmission and Distribution, vol. 147, no. 4, pp. 261-266, 2000.
20.P.A. Mastorocostas, J. B. Theocharis and A.G. Bakirtzis,Fuzzy modeling for short term load forecasting using the orthogonal least squares method,” IEEE Trans. Power Systems, vol. 14, no. 1, pp. 29-36, 1999.
21.H.R. Kassaei, A. Keyhani, T. Woung and M. Rahman, “A hybrid fuzzy, neural network bus load modeling and predication,” IEEE Trans. Power Systems, vol. 14, no. 2, pp. 718-724, 1999.
22.D. Srinivasan, S.S. Tan, C.S. Chang and E.K. Chan, “Practical implementation of a hybrid fuzzy neural network for one-day-ahead load forecasting,” IEE Proc. Generation, Transmission and Distribution, vol. 145, no. 6, pp. 687-692, 1998.
23.M. Daneshdoost, M. Lotfalian, G. Bumroonggit, J.P. Ngoy, “Neural network with fuzzy set-based classification for short-term load forecasting,” IEEE Trans. Power Systems, vol. 13, no. 4, pp. 1386-1391, 1998.
24.Kwang-Ho Kim, Hyoung-Sun Youn, Yong-Cheol Kang, “Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method,” IEEE Trans. Power Systems, vol. 15, no. 2, pp. 559-562, 2000.
25.Rey-Chue Hwang, Huang-Chu Huang, Yu-Ju Chen, Jer-Guang Hsich, Hsing Chao, “Adaptive power signal prediction by non-fixed neural network model with modified fuzzy back-propagation learning algorithm,” IEEE Proc. ICICS, pp. 689-692, 1997.
26.Rey-Chue Hwang, Huang-Chu Huang, Shyh-Jier Huang, Sy-Ruen Huang and Yu-Ju Chen, “Power signal prediction by fuzzy-neural model with considering training problems,” IEEE Proc. ICIT, pp. 687-691, 1996.
27.Mo-Yuen Chow, Jinxiang Zhu, H. Tram, “Application of fuzzy multi-objective decision making in spatial load forecasting,” IEEE Trans. Power Systems, vol. 13, no. 3, pp. 1185-1190, 1998.
28.吳宗正,「迴歸分析理論與應用」,復文書局,台南,1989。
29.劉思峰,郭天榜,党耀國,「灰色系統理論及其應用」,科學出版社,中國北京,1999。
30.吳漢雄,鄧聚龍,溫坤禮,「灰色分析入門」,高立出版社,台北,1996。
31.鄧聚龍,郭洪,「灰預測原理與應用」,全華科技圖書公司,台北,1996。
32.L. A. Zadeh, “Fuzzy Sets,” Information and Control 8, pp. 338-353, 1965.
33.汪培庄,「模糊集合論及其應用」,中國生產力中心,台北,1990。
34.L. A. Zadeh, “Outline of a new approach to the analysis of complex systemsand decision process,” IEEE Trans. Syst. Man, Cybern. 3, pp. 28-44, 1973.
35.L. A. Zadeh, “Similarity relations and fuzzy orderings,” Information Sciences, 3, pp. 177-200, 1971.
36.C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller Part Ⅰ, Ⅱ. IEEE Tran. Syst. Man, Cybern. 20, 1990.
37.王文俊,「認識Fuzzy」,全華科技圖書公司,台北,1997。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top