跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 19:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡政倫
研究生(外文):Jeng-Lung Tzai
論文名稱:電力諧波下之變壓器特性分析與研究
論文名稱(外文):A study on Transformer Characteristics Under Harmonic Source
指導教授:陳昭榮陳昭榮引用關係
指導教授(外文):Chao-Rong Chen
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:146
中文關鍵詞:電壓畸變因數諧波相位移
外文關鍵詞:Voltage Distortion FactorsHarmonic Phase Angle
相關次數:
  • 被引用被引用:9
  • 點閱點閱:839
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用ELGAR SW5250A諧波電壓產生器以及ADX3000電力品質紀錄器以實際負載法來實驗各種諧波電壓波形對於單相、三相變壓器之接線所造成的影響,包括變壓器在諧波下之銅損、鐵損,以及諧波對變壓器三相之不同接線方式的影響。本文中所提出的諧波電壓波形之諧波次數為二次到七次、電壓畸變因數(VDF)為15%與20%、及諧波相位角為0°、45°、90°、135°、180°、225°、270°、315°八種。本論文實驗中所量測得到的數據包括一次側輸入電流、輸入電壓、二次側電壓、電流。
從本實驗中所得到的結果可以發現,諧波對於單相變壓器的影響原因,包括輸入諧波的次數、諧波電壓畸變因數以及諧波相位的的大小。而對於三相變壓器,除了輸入諧波波形的次數、諧波電壓畸變因數以及諧波相位的的大小之外,三相變壓器的連接方式,如Y-Y、Y-△、△-Y、△-△、V-V連接,這些因素的改變,都會對變壓器的電氣特性、物理特性有所影響。而以上這些經由量測所得到的結果發現傳統的諧波模型無法得到正確的模擬與分析,因此本論文提出使用倒傳遞類神經網路,經由學習得到適當的電力參數,結果發現可以利用類神經倒傳遞網路來正確的模擬諧波下單相、三相變壓器的運轉特性模型。
The paper presents using Elgar 5250A harmonic voltage generator and ADX3000 power quality recorder to investigate the effect of various harmonic voltage wafeform on the operation performance, core loss and iron loss of single and three phase transformer. In this experiment, the voltage harmonic orders from 2 to 7, the voltage harmonic distortion factors (VDF) are 15% and 20%, respectively, were chosen, and according to different phase angle, each harmonic order was designed into 8 kinds of waveforms which phase angles are 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°. The experimental data includes core loss, iron loss, the two sides voltage, input current and efficiency.
From the experiment result, it can be found that the operation performance of single-transformer varies by not only different voltage harmonic orders and VDF but also phase angles of each individual harmonic. We can also be found that the operation performance of three-transformer varies by not only different voltage harmonic orders, VDF and phase angles of each individual harmonic,but also the three phase connection, such as Y-Y, Y-△, △-Y, △-△, V-V. These elements change will affect transformer’s electronic and physical characteristic. The effect of harmonic is hardly known by traditional analysis on the operation performance of transformer. Therefore, the paper uses back-propagation neural network to find the suitable parameters by learning, and can simulate the harmonic problems correctly on the operation of single and three-phase transformer.
摘要i
Abstractii
誌謝iii
目次iv
圖目錄vii
表目錄xii
第一章 緒論1
1.1研究動機與背景1
1.2研究目的3
1.3研究步驟與方法3
1.4本論文之貢獻4
1.5論文內容概述5
第二章 諧波與電力系統7
2.1基本諧波理論7
2.1.1諧波的定義7
2.1.2 諧波畸變因數之定義10
2.1.3 諧波相位移之定義11
2.2 諧波的產生13
2.2.1電源系統諧波源13
2.2.2用戶系統諧波源15
2.2.3其他及未來諧波源17
2.3 諧波對電力系統所產生之影響18
2.3.1絕緣應力之影響18
2.3.2熱應力之影響19
2.3.3諧波對電氣設備之影響20
2.3.3.1諧波對變壓器的影響20
2.3.3.2諧波對旋轉機械的影響24
2.3.3.3諧波對電力用電容器組的影響24
2.3.3.4諧波對其他電力設備之影響24
2.4諧波下電力系統元件模型25
第三章 類神經網路29
3.1 簡介29
3.1.1 類神經網路歷史回顧29
3.1.2 類神經網路之特點34
3.2 類神經網路基本模型35
3.3類神經網路的分類38
3.4倒傳遞類神經網路41
3.4.1倒傳遞網路原理41
3.4.2倒傳遞網路架構41
3.4.3本文使用倒傳遞網路動機43
3.4.4 倒傳遞神經網路演算法44
3.4.4.1資料正規化44
3.4.4.2倒傳遞網路演算法45
3.4.4.3倒傳遞神經網路回想演算49
3.4.5倒傳遞神經網路之進一步探討52
第四章 諧波對變壓器的影響之實驗55
4.1諧波對單相變壓器之影響55
4.1.1實驗架構55
4.1.2實驗步驟60
4.1.3諧波對單相變壓器之影響63
4.1.3.1諧波含量由15%到20%對一次側激磁電流的影響63
4.1.3.2諧波含量由15%到20%對變壓器損失的影響68
4.1.3.3諧波相位移由0°到315°變化對變壓器損失的影響70
4.1.3.4諧波由2次到7次變化對變壓器損失的影響75
4.1.3.5實驗測試結果及分析78
4.2諧波對三相變壓器之影響80
4.2.1實驗架構80
4.2.2實驗步驟81
4.2.3無載下諧波對三相變壓器之影響82
4.2.3.1正常電壓波形對變壓器電壓的影響82
4.2.3.2諧波對Y/Y接線的影響83
4.2.3.3諧波對Y/△接線二次側電壓的影響92
4.2.3.4諧波對△/△接線二次側電壓的影響93
4.2.3.5諧波對△/Y接線二次側電壓的影響94
4.2.3.6諧波對V/V接線二次側電壓的影響95
4.2.3.7諧波對變壓器接線二次側電壓的影響總評估96
4.2.4有載下諧波對三相變壓器功率之影響96
4.2.4.1諧波對變壓器Y/Y接線功率的影響96
4.2.4.3諧波對變壓器Y/△接線功率的影響99
4.2.4.4諧波對變壓器△/△接線功率的影響100
4.2.4.5諧波對變壓器△/Y接線功率的影響101
4.2.4.6諧波對變壓器V/V接線功率的影響102
4.2.4.7諧波相位移對變壓器Y/Y接線功率的影響103
4.2.4.8諧波相位移對變壓器Y/△接線功率的影響105
4.2.4.9諧波相位移對變壓器△/△接線功率的影響107
4.2.4.10諧波相位移對變壓器△/Y接線功率的影響109
4.2.4.11諧波相位移對變壓器V/V接線功率的影響111
4.2.5諧波對三相變壓器激磁電流之影響113
4.2.5.1諧波對變壓器Y/Y接線激磁電流之影響114
4.2.5.2諧波對變壓器Y/△接線激磁電流之影響116
4.2.5.3諧波對變壓器△/△接線激磁電流之影響118
4.2.5.4諧波對變壓器△/Y接線激磁電流之影響120
4.2.5.5諧波對變壓器V/V接線激磁電流之影響122
4.2.6諧波對三相變壓器效率之影響124
4.2.6.1諧波對變壓器Y/Y接線效率的影響124
4.2.6.2諧波對變壓器Y/△接線效率的影響125
4.2.6.3諧波對變壓器△/△接線效率的影響126
4.2.6.4諧波對變壓器△/Y接線效率的影響127
4.2.6.5諧波對變壓器V/V接線效率的影響128
4.2.7實驗測試結果及分析129
第五章 類神經網路模擬130
5.1傳統分析建構變壓器之模型130
5.2以類神經網路建構變壓器諧波下模型131
5.2.1以倒傳遞網路模擬單相變壓器諧波下特性132
5.2.2以倒傳遞網路模擬三相變壓器諧波下特性136
第六章 結論與未來研究方向139
6.1結論139
6.2未來研究方向140
參考文獻141
作者簡介 146
[1] 喻國湳、謝文考,「淺談化纖廠的配電系統諧波改善問題」,電機月刊,第9卷第2期,民國88年2月。
[2] 林昆平,「以相移操作技術解決電子廠諧波問題」,電機月刊,第6卷第11期,民國85年11月。
[3] 顏世雄、韓應全,「電力系統諧波潮流之計算」,台電工程月刊,第407期,民國71年7月。
[4] 吳清通,「系統高諧波對電力設備及負載之影響」,台電工程月刊,第485期,民國78年1月。
[5] 胡忠興,「小型工業配電系統之諧波分析與抑制的實驗研究」,私立中原大學,碩士論文,中華民國82年。
[6] 陳望增,「電力諧波改善實力探討」,電機技師,77期,民國88年10月。
[7] Wanger,V.E.,”Effect of Harmonic on Equipment”, IEEE Trans. on Power Delivery,Vol.8,No.2,pp.672-680 , April.1998.
[8] C.Nussbaum, H.Pfutzner, Th.Booth, N.Baumgartinger, A.Ilo, and M.Clabian, ” Neural Network for the Prediction of Magnetic Transformer Core Characteristics”, IEEE Trans. on Magnetic, Vol.36, No.1, pp. 313-329, January, 2000.
[9]殷世安,「配電系統諧波污染來源探討與防治研究」,國立成功大學碩士論文,中華民國82年。
[10]林元瑞,「諧波相位角對三相感應電動機運轉特性之影響」,國立台北科技大學論文,中華民國89年。
[11] Wang, Z. and Liu, Y.,”Modeling and simulation of a cycloconverter drive system for harmonic studies”,IEEE Trans. on Industrial Electronics, Vol. 47, pp.533-541,2000.
[12] Hamrita, T.K.,Heck, B.S. and Meliopoulos, A.P.S.,”On-line correction of errors introduced by instrument transformers in transmission-level steady-state waveform measurements”,IEEE Trans. on Power Delivery , Vol. 15, pp. 1116-1120,2000.
[13] Tongxin Zheng and Makram, E.B.,”An adaptive arc furnace model”, IEEE Trans. on Power Delivery,Vol. 15, pp. 931-939,2000.
[14] Fuchs, E.F.,You, Y. and Roesler, D.J.,”Modeling and simulation, and their validation of three-phase transformers with three legs under DC bias”, IEEE Trans. on Power Delivery, Vol. 14 , pp. 443-449,1999.
[15] Chowdhury, A.H.,Grady, W.M. and Fuchs, E.F.,”An investigation of the harmonic characteristics of transformer excitation current under nonsinusoidal supply voltage”, IEEE Trans. on Power Delivery, Vol. 14, pp. 450-458, 1999.
[16] Staats, P.T., Grady, W.M., Arapostathis, A. and Thallam, R.S.,”A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging”, IEEE Trans. on Power Delivery, Vol. 12, pp. 1562-1568, 1997.
[17] Hedia, H., Henrotte, F., Dular, P., Genon, A. and Legros, W. Magnetics, ”Determination of equivalent material characteristics for parasitic effects in electrical apparatus”,IEEE Trans. on Power Delivery , Vol. 32 , pp. 4341-4343,1996.
[18] Jain, P., Jain, P. and Quaicoc, J.,”Tertiary side resonant dc/dc converter with integrated magnetics”, IEEE Trans. on Magnetics, Vol. 32, pp. 5016-5018, 1996.
[19] Perreault, D.J. and Kassakian, J.G.,”Effects of firing angle imbalance on 12-pulse rectifiers with interphase transformers”, IEEE Trans. on Power Electronics,Vol. 10 , pp. 257-262, 1995.
[20] Pillay, P. and Refoufi, L.,”Calculation of slip energy recovery induction motor drive behavior using the equivalent circuit”, IEEE Trans. on Industry Applications, Vol. 30 , pp. 154-163,1994.
[21] Meliopoulos, A.P.S., Glytsis, E.N., Cokkinides, G.J. and Rabinowitz, M., ”Comparison of SS-GIC and MHD-EMP-GIC effects on power systems”, IEEE Trans. on Power Delivery, Vol. 9 , pp. 194-207, 1994.
[22] Nelson, D.J. and Jessee, J.P.,”A coupled thermal magnetic model for high frequency transformers. I. Model formulation and material properties“,IEEE Trans. on Components, Hybrids, and Manufacturing Technology, Vol. 15 , pp. 730-739, 1992.
[23] Fuchs, E.F., Masoum, M.A.S., Roesler, D.J.,”Large signal nonlinear model of anisotropic transformers for nonsinusoidal operation. I. lambda -i characteristics“,IEEE Trans. on Power Delivery, Vol. 6 ,pp. 1874 —1886,1991.
[24]周翌生,「電力系統諧波問題之探討」,電機月刊,第六卷第十期,第139頁至143頁。
[25]彭雲將,「電力諧波」,電機月刊,第三卷第一期,第100頁至102。
[26]台鵬,「防護高諧波障害電力電容器之保護對策」,電機月刊,第三卷第八期,第106頁至108頁。
[27]張文曜、江榮城、顏世雄,「諧波對電子電路的影響與對策」,台電工程月刊,第528期,第75頁至第85頁。
[28]洪瑤,「電力系統諧波問題探討」,台電工程月刊,第547期,第11至第21頁。
[29] Wanger, V. E., “Effect of Harmonic on Equipment,” IEEE Trans. on Power Delivery, Vol. 8, No. 2, pp. 672-680, April, 1993.
[30] IEEE Working Group on Power System Harmonics, “The Effects of Power System Harmonics on Power System Equipment and Loads”, IEEE Trans. on Power Apparatus and System, Vol. PAS-104, No. 9, l985, pp. 2555-2563.
[31] J. Arrillaga, D. A. Bradley, “Power System Harmonics”, John and Sons, New York, l985.
[32] Klingshirn, E. A. and H. E. Jordan,Polyphase Induction Motor Performance
and Losses on Nonsinusoidal Voltage Source,”IEEE Trans. on Power Apparatus and System, Vol. 87, No. 3, pp. 624-631, March, 1968.
[33] J. Arrillaga, B. C. Smith, N. R. Watson and A. R. Wood, "Power System
[34] Linders, J. R.,“Effects of Power Supply Variation on AC Motor
Characteristics,”IEEE Trans. on Industry Application, Vol. 8, pp. 383-400,
July /Aug., 1972.
[35] Cumming, P. G., “Estimating Effect of System Harmonic on Losses and
Temperature Rise of Squirrel-Cage Motors,”IEEE Trans. on IA, Vol. 22, No. 6.
pp. 1121-1126, 1986.
[36]E. Wernekinck, A. Kawamura and R. Hoft, “A high frequency ac/dc
[37]Mori, H., "Harmonic Analysis of Chopper Controlled
[38] Zastrow, O. W., "Recommended Practice for Voice Frequency Electrical Noise Tests of Distribution Transformers", IEEE Trans., COM-21, 1973, pp.1448-1455.
[39] IEEE Guide for Harmonic Control and Reactive Compensatiue of static Power Concerters, IEEE 519-1981.
[40]胡倉溢、劉坤城,「電力系統電壓及無效電力之綜合控制」,電機月刊,第22期,1992年10月。
[41]周翌生、劉志文、張永宗、全懋精密科技、林建宏,「工業晃諧波源分析、量測、改善方式與諧波改善送審書之製作」,電機月刊,1998年10月。
[42]宓哲民、陳明堂,「系統諧管制標準」,電機月刊,第五卷第十期。
[43]顏世雄,「諧波對電器儀表的影響」,台電工程月刊,民國78年5月。[44]Francisco de Le’on,A.Semlyen,”A Simple Representation of Dynamic Hysteresis
Losses In Power Transformers”IEEE Trans. on Power Delivery,vol.10,no 1 January 1995.
[45]A.E.Fitzqerald,charles kingsly,Jr.,Stephen D.Umans,”Electric Machinery”,5/E in SI Units,Metric Edition,1992.
[46]H.Pfutzner,C.”Three-dimensional Flux Distributions in Transformer Cores as a Function of Package Design”
[47]何金滿、張正彥,「諧波對輸配電及變壓器之影響分析」,第18屆電力研討會,1997年。
[48] Linden W.Pierce,”Transformer Design and Application Considerations for Nonsinusoidal Load Currents”,IEEE Trans.on Industry Application, vol.32, No.3,1996.
[49] Abid, S., Fnaiech, F., Najim, M.,”A fast feedforward training algorithm using a modified form of the standard backpropagation algorithm”, IEEE Transactions on Neural Networks,Vol. 12 , pp. 424 —430,March 2001.
[50] Rasche, C., Douglas, R.J.,”Forward- and backpropagation in a silicon dendrite”, IEEE Transactions on Neural Networks,Vol. 12 , pp. 386 —393,2001.
[ 51] Nandy, D., Ben-Arie, J.,”Shape from recognition: a novel approach for 3-D face shape recovery”, IEEE Transactions on Image Processing, Vol. 10 , pp. 206 —217,Feb. 2001.
[ 52] Guardabassi, G.O., Savaresi, S.M. ,”Virtual reference direct design method: an off-line approach to data-based control system design”, IEEE Transactions on Automatic Control, Vol. 45 , pp. 954 —959,May 2000.
[ 53] Yonghua Fang, Yagoub, M.C.E., Fang Wang, Qi-Jun Zhang ,”A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks “,IEEE Transactions on Microwave Theory and Techniques, Vol. 48 , pp. 2335 -2344, Dec. 2000.
[ 54] Nussbaum, C., Pfutzner, H., Booth, Th., Baumgartinger, N., Ilo, A., Clabian, M.,”Neural networks for the prediction of magnetic transformer core characteristics “, IEEE Transactions on Magnetics, Vol. 36. pp. 313 -329, Jan. 2000.
[ 55] Tsihrintzis, G.A., Devaney, A.J.,” Higher order (nonlinear) diffraction tomography: inversion of the Rytov series”,IEEE Transactions on Information Theory,Vol. 46 , Pp. 1748 —1761,Aug. 2000.
[ 56] Venkatraman, M., Kwon, H., Nasrabadi, N.M. ,”Object-based SAR image compression using vector quantization”,IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, pp. 1036 —1046,Oct. 2000.
[57]Chen, Y.-M. and O''Connell, R.M.,”Active power line conditioner with a neural network control”,IEEE Transactions on Industry Applications,Vol.33 , pp.1131-1136 ,1997.
[58] Mori, H., Itou, K., Uematsu, H. and Tsuzuki, S. ,”An artificial neural-net based method for predicting power system voltage harmonics”, IEEE Transactions on Power Delivery, Vol.7 ,pp. 402—409, 1992.
[59]葉怡成,類神經網路模式應用與實作,儒林圖書有限公司。
[60] Richard P. Lippmann, ”An Introduction to Computing with Neural Nets”,IEEE ASSP Mag.pp.4-22,April 1987.
[61]林昇甫、洪成安,神經網路入門與圖樣辨識,全華圖書有限公司。
[62] Hossein Lari-Najafi,Mohammed Nasiruddin,Tariq Samad,”Effect of initial weights on back-propagation and its variations,”IEEE Trans. on Neural Networks,pp.218-219,1989.
[63] Chin-Teng Lin and C.S.George Lee,”Neural Fuzzy Systems,”Feedforward Network and Supervised Learning,pp.244-225,1999.
[64] L.Fletcher,V.Katkovnik,F.E.Steffens,A.P.Engelbrecht,”Optimizing the Number of Hidden Nodes of a Feedforward Artificial Neural Network,”IEEE Trans. on Neural Network,pp.1608-1612,1998.
[65] A.R.Barron,Approximation and Estimation Bounds for Artificial Neural Network.Machine Learning,(14):115-133,1994.
[66] Xiangui Yu,Nan K.Loh,W.C.Miller,”TraningvHard-limiting Neurons Using Back-Propagation Algorithm By Updating Steepness Factors,”Neural Network,pp.526-530,1994.
[67] A.E. Fitzgerald, Stephen D. Umans, Charles Kingsley, Jr.(1952),”Electric Machinery”, McGraw-Hill,inc.,Page(s):63-64
[68] Chee-Mun Ong, ''Dynamic Simulation of Electric Machinery:Using Matlab/ Simulink,'' Prentice-Hall, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top