(44.192.112.123) 您好!臺灣時間:2021/02/28 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴聖棠
論文名稱:均勻混色繞射元件設計
論文名稱(外文):Design of uniform color mixing diffractive optical element
指導教授:林世穆林世穆引用關係
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電技術研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:繞射元件均勻混色GS 演算法
外文關鍵詞:diffractive optical elementuniform color mixingGS algoruthm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:422
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
繞射光學元件(Diffractive optical element)是在80年代中期才發展的一門新興光學工藝,它是利用繞射理論來設計。元件尺寸很小,表面佈滿波長等級的浮雕結構(Surface relief)。這些浮雕結構造成的相位延遲,使得入射光在觀察面上的光場,經疊加後的分布達到預設的結果。
本篇論文主要是設計一純相位式(Phase only)的繞射元件,使得包含兩種以上不同波長的入射光源經過繞射元件後,都能在觀察面上均勻分佈,稱之為均勻混色(Uniform color mixing)繞射元件。和傳統讓入射光產生散射或折射以達到均勻化目的的方法比較,繞射元件有較好的能量效率。本研究是使用適用於多波長的GS演算法做設計,並搭配Pnoise法及減緩相位變化的速度來對演算法作改良,期使能獲得更佳的成像品質。
由數值模擬結果,入射光波長分別是635nm和445nm,若是使用單一波長的GS演算法並針對635nm做設計,則其光點均勻度13.22%算是不錯的水準,但445nm的光點均勻度只有55.69%。我們就是要避免這種兩波長光強分佈差異過大的結果,所以使用適用多波長的GS演算法,期待兩波長的光強能更均勻的分佈。模擬結果為29.72%和43.19%,還在一個可接受的範圍內,也證明這套演算法的有效性。若將入射光波長的差異縮小到635nm和565nm,則其光點均勻度分別可更提昇至19.96%和23.45%。

Diffractive optical elements(DOE) have been developed since the middle 1980’s. It’s based on diffraction theory. The characters of DOE are mini size and surface relief. Surface relief can control the incident wave front to perform desired distribution.
In this research project, we design a phase-only DOE that can let light with different wavelength uniformly distribute on the observational plane. We call this ” Uniform color mixing DOE”. Comparing with the past technique, ”Uniform color mixing DOE” has better energy efficiency. We design this ”color mixing DOE” based on multiple wavelength GS algorithm and also improve the algorithm. We hope the improvement can bring the better quality of image.
According to numerical simulation results, the wavelengths of incident light are 635nm and 445nm. If we use the method of single wavelength GS algorithm for 635nm, its DR(dynamic arrange) will be 13.22%. The result is good. But for 445nm, the DR is not good because its only 55.69%. The two results are quite different. To avoid this problem, so we use multiple wavelength GS algorithm. The numerical simulation results are 29.72% and 43.19%, respectively. The results are in an acceptable range. So we can prove the efficiency of this algorithm.

第一章緒論…………………………………………………….…………………..1
1.1 繞射元件簡介…………………………………………………………..1
1.2 文獻探討………………………………………………………………..2
1.3 論文架構………………………………………………………………..4
第二章光學理論…………………………………………………….……………..5
2.1 繞射理論簡介…………………………………………………………..5
2.2 純量繞射理論…………………………………………………………..6
第三章演算法分析與架構………………………………...….…………………14
3.1 GS演算法分析………………………………………………………....14
3.2 GS演算法步驟………………………………………………………....15
3.3 元件相位量化………………………………………………………....17
3.4 GS演算法改良………………………………………………………....20
3.5 模擬退火法分析………………………………………………………..21
3.6 模擬退火法的退火方式與代價函數…………………………..………23
3.7 模擬退火法設計流程…………………………………………………..25
第四章均勻混色繞射元件設計………...……………………..…………………29
4.1 均勻混色元件應用………...…………………….………………...30
4.2 多波長時的演算法分析..…………………………………………...31
4.3 多波長時的演算流程..……………………………………………...33
第五章數值模擬結果………………..……………………………...…….……...36
5.1 單一波長時的模擬結果…………..………………………………...37
5.1.1 使用GS演算法…………...…….…….……………………......37
5.1.2 使用GS改良法…………...…….…….……………………......40
5.1.3 使用模擬退火法……...…….…….……………………........44
5.2 多波長時的模擬結果…………………………………………………48
第六章結論與討論……………………………………………………………….55
6.1 取樣點分析與目標振幅設定…………………………………………55
6.2 疊代次數對成像品質的影響…………………………………………55
6.3 演算法的選擇…………………………………………………………56
6.4 結論……………………………………………………………………56
參考文獻………………………………………………………………....58
附錄………………………………………………………………………..61

1.Yan Zhang, Bi-Zhen Dong, Ben-Yuan Gu, and Guo-Zhen Yang, ”Beam shaping in the fractional Fourier transform domain ”, J. Opt. Soc. Am. A, 15, pp. 1114-1120, (1998).
2.Xin Tan, Ben-Yuan Gu, Guo-Zhen Yang, and Bi-Zhen Dong, ”Diffractive phase elements for beam shaping: a new design method ”, Applied Optics, 34, pp. 1314-1320, (1995).
3.Ian M. Barton, Paul Blair, and Mohammad R. Taghizadeh, ”Diffractive phase elements for pattern formation: phase-encoding geometry considerations”, Applied Optics, 36, pp. 9132-9137, (1997).
4.Rong Liu, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang, ”Design of diffractive phase elements that realize axial-intensity modulation based on the conjugate-gradient method”, J. Opt. Soc. Am. A, 15, pp. 689-694, (1998).
5.Rong Liu, Ben-Yuan Gu, and Bi-Zhen Dong, ”Implementation of pseudo-nondiffracting beams by use of diffractive phase elements”, Applied Optics, 37, pp. 8219-8223, (1998).
6.Guo-Zhen Yang, Ben-Yuan Gu, and Xin Tan, ”Iterative optimization approach for the design of diffractive phase elements simultaneously implementing several optical functions”, J. Opt. Soc. Am. A, 11, pp. 1632-1640, (1994).
7.Bi-Zhen Dong, Rong Liu, Guo-Zhen Yang, and Ben-Yuan Gu, ”Design of diffractive phase elements that generate monochromatic or color point and ring patterns”, J. Opt. Soc. Am. A, 15, pp. 480-486, (1998).
8.Mbaye Lo, Bi-Zhen Dong, Ben-Yuan Gu, Patrick Meyrueis, ”Non-periodic diffractive phase element for wavelength-division (de)multiplexing”, Optics Communication, 173, pp. 217-221, (2000).
9.Jorgen Bengtsson, ”Kinoforms designed to produce different fan-out patterns for two wavelengths”, Applied Optics, 37, pp. 2011-2020, (1998).
10.Michael A. Seldowitz, Jan P. Allebach, and Donald W. Sweeney, ”Synthesis of digital holograms by direct binary searchI”, Applied Optics, 26, pp. 2788-2798, (1987).
11.R. W. Gerchberg and W. O. Saxton, ”A practical algorithm for the determination of phase from image and diffraction plane pictures”, Optik, 35, pp. 247-246, (1972).
12.Hiroshi Akahori, ”Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the Kinoform”, Applied Optics, 25, pp. 802-811, (1986).
13.Jeng-Feng Lin and A. A. Sawchuk, ”Design of diffractive optical elements with optimization of the signal-to-noise ration and without a dummy area”, Applied Optics, 36, pp. 3155-3164, (1997).
14.V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, ”Adaptive iterative algorithm for focusators synthesis”, Optik, 88, pp. 17-19, (1991).
15.V. V. Kotlyar and P. G. Serafimovich, ”Adaptive iterative method of calculate Kinoforms”, Optics and Spectroscopy, 77, pp. 606-609, (1994).
16.Guo-Zhen Yang, Bi-Zhen Dong, Ben-Yuan Gu, Jie-Yao Zhuang, and Okan K. Ersoy, ”Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison”, Applied Optics, 33, pp. 209-218, (1994).
17.S. Kirkpatrick and C.D. Gelatt, ”Optimization by Simulated Anneling”, Science, 220, pp. 671-680, (1983).
18.Guangya Zhou, Yixin Chen, Zongguang Wang, and Hongwei Song, ”Genetic local search algorithm for optimization design of diffractive optical elements”, Applied Optics, 38, pp. 4281-4290, (1999).
19.Weichumg Chao, Sien Chi, Ching Yi Wu, Chung J. Kuo, ”Computer-generated holographic diffuser for color mixing”, Optics Communications, 151, pp. 21-24, (1998).
20.趙凱華、鐘錫華編著,”光學”,儒林圖書出版,中華民國八十一年八月。
21.J. W. Goodman, ”Introduction to Fourier Optics”, The McGRAW-HILL, (1992).
22.Framk Wyrowski, ”Diffractive optical elements: iterative calculation of quantized, blazed phase structures”, J. Opt. Soc. Am. A, 7, pp. 961-969, (1990).
23.顏瑞遠,”修正多面鏡光學掃描器軸動的繞射光學元件之探討”,中央大學光電所碩士論文,1994年。
24.伍清欽,”以繞射元件產生無繞射光束”,交通大學光電所碩士論文,2000年。
25.曾祥城,”可變強度光束陣列系統中光學繞射元件的設計與分析”,中正理工學院電機研究所碩士論文,1997年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔