(44.192.112.123) 您好!臺灣時間:2021/03/01 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林炳和
研究生(外文):P. H. Lin
論文名稱:奈米碳管合成與分析
論文名稱(外文):Synthesis and Characterization of Aligned Carbon Nanotubes
指導教授:林啟瑞林啟瑞引用關係陳貴賢陳貴賢引用關係林麗瓊林麗瓊引用關係
指導教授(外文):C. R. LinK. H. LinL. C. Chen
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:56
中文關鍵詞:奈米碳管微波電漿輔助化學氣相沈積場發射
外文關鍵詞:Carbon nanotubesMPECVDField emission
相關次數:
  • 被引用被引用:1
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究奈米碳管之成長機制及其電子場發射性質之應用。使用一個兩階段成長方法首先利用離子束濺鍍沉積法 (ion beam sputtering deposition;IBSD)於矽晶片或康寧玻璃基板上濺鍍一層過渡金屬催化薄膜 (Fe or Ni catalyst thin film), 做基材的氫電漿前處理而得到奈米尺寸金屬催化微粒,然後使用微波電漿輔助化學氣相沉積法(microwave plasma-enhanced chemical vapor deposition; MPECVD)合成奈米碳管。已經成功利用微波電漿輔助化學氣相沉積法直接於矽晶片或康寧玻璃基板在500 °C的低溫下合成大面積、均勻且高準直性的奈米碳管。研究中發現金屬催化薄膜的厚度為影響奈米碳管低溫製程最重要的因素。奈米碳管的長度、直徑以及準直性可以做系統性的控制藉由改變製程參數,這些參數包括微波功率、壓力、反應溫度、反應時間、氮氣流量以及金屬催化薄膜的厚度等。高解析的電子顯微鏡(HRSEM)以及穿透式電子顯微鏡(HRTEM)被使用來鑑定奈米碳管的表面形貌及結構。拉曼光譜(Raman spectra)則被使用來分析奈米碳管薄膜的鍵結。
在奈米碳管之場發射性質應用方面,在場發射電性量測方面發現在500 °C低溫合成的奈米碳管有相當低的起始電場 (6.2 V/μm)及高的場發射電流密度(0.1 mA/cm2),然而在1000 °C沉積的奈米碳管有更低的起始電場 (2.8 V/μm)及較高的場發射電流密度(35 mA/cm2)。

This thesis is mainly focused on the synthesis and field emission property applications of carbon nanotubes (CNTs). A two-step process was employed to synthesize CNTs in that ion beam sputtering deposition (IBSD) was used to deposit iron or nickel catalyst thin films on silicon and Corning glass 7059 followed by hydrogen plasma pretreatment to form nano-size Fe or Ni particles and the CNTs growth by microwave plasma-enhanced chemical vapor deposition (MPECVD) at the second step.
Well-aligned, uniform carbon nanotubes (CNTs) have been obtained in large area at low temperature of 500 °C using the present technique. The thickness of the catalyst thin film was found to be the most important factor in the low temperature growth process. Systematic control of the length, diameter, and alignment of the CNTs has been achieved by changing the deposition parameters such as microwave power, pressure, temperature, N2 flow rate and thickness of catalyst film. High resolution SEM and TEM were used to characterize the morphology and structure of the nanotubes. Raman spectroscopy was employed to analyze the bonding state of CNTs.
For the property of the carbon nanotubes, field emission measurement showed a low turn on field (6.2 V/μm) and high emission current density (0.1 mA/cm2) for the films grown at a low temperature of 500 °C. However, a much lower turn on field (2.8 V/μm) and higher emission current density (35 mA/cm2) can be achieved for the films grown at a higher temperature of 1000 °C.

Abstract (Chinese).........................................iii
Abstract (English)..........................................iv
Acknowledgement..............................................v
Table of Contents...........................................vi
List of Tables............................................viii
List of Figures.............................................ix
Chapter 1. Introduction......................................1
1.1 History of carbon nanotubes..............................1
1.2 Structure of carbon nanotubes............................2
1.3 The methods of synthesizing carbon nanotubes.............4
1.3.1 Arc discharge method...................................4
1.3.2 Laser ablation.........................................5
1.3.3 Thermal chemical vapor deposition......................6
1.4 Properties and applications of carbon nanotubes..........7
1.4.1 Field emission display.................................7
1.4.2 Compound material......................................8
1.4.3 The probe of atomic force microscopy...................8
1.4.4 Storage of hydrogen gas................................9
1.5 Alignment of carbon nanotubes...........................10
1.6 Motive of this thesis...................................12
Chapter 2. Experiment and characterization..................13
2.1 Experiment .............................................13
2.1.1 Preparation of substrates.............................13
2.1.2 Flow chart of synthesis and characterization of CNTs…14
2.1.3 Ion beam sputtering deposition (IBSD).................15
2.1.4 Microwave plasma enhanced CVD (MPECVD)................18
2.2 Characterization........................................19
2.2.1 Scanning electron microscopy..........................19
2.2.2 High-resolution transmission electron microscopy......20
2.2.3 Raman spectroscopy....................................20
2.2.4 Field emission measuremen.............................21
Chapter 3. Results and discussion...........................22
3.1 Synthesis...............................................22
3.1.1 Deposition of Fe catalyst layer.......................22
3.1.2 Growth procedure of CNTs..............................23
3.1.3 Fe catalyst thickness dependence......................25
3.1.4 Temperature dependence................................29
3.1.5 Fe catalyst thickness and temperature dependence......32
3.1.6 Temporal evolution of CNTs growth.....................34
3.1.7 N2 flow rate dependence for CNTs growth...............35
3.1.8 HRTEM of the CNTs.....................................38
3.1.9 Analysis of Raman spectra for CNTs films .............41
3.1.10 Growth mechanism of well-aligned CNTs................43
3.1.11 Formation of CNTs films using Ni catalyst layer......45
3.1.12 Field emission measurement...........................49
Chapter 4 Conclusion........................................52
Chapter 5 Future work.......................................53 Reference...................................................54
Introduction of author......................................56

1. http://cnst.rice.edu/reshome.html
2. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl & R. E. Smalley, Nature 318, p162, 1985.
3. S. Iijima, Nature 354, p56, 1991.
4. S. Iijima, P. M. Ajayan and T. Ichihashi, Phys. Rev. Lett. 69, p3100, 1992.
5. S. Iijima and T. Ichihashi, Nature (London) 363, p603, 1993.
6. D. S. Bethune, C. H. King, M. S. de Vriess, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, p605, 1993.
7. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
8. X. Zhao, M. Ohkohchi, M. Wang, S. Luma, T. Ichihashi and Y. Ando, Carbon, 35, p775, 1997.
9. Wang, M., Zhao, J., Ohkohchi, M. and Ando, Y., Fullere Sci. Tech., 4, p1027, 1996.
10. Zhao, X., Wang, M., Ohkohchi, M. and Ando, Y., Jpn. Appl. Phys., 35, p4451, 1996.
11. C. Journet, P. Bernier, Appl. Phys. A 67, p1, 1998.
12. T. Guo, P. Nikolaev, A. G. Ginzler, D. Tomanek, D. T. Colbert, R. E. Smalley, J. Phys. Chem. 99, p10694, 1995.
13. C. Laurent, E. Flahaut, A. Peigney, A. Rousset, New J. Chem., 1229, 1998.
14. W Zhu, Carbon Nanotubes: An Industrial perspective, in Defense Science & Technology Seminar on Emerging Technologies, Arlington, VA, March 19, 1999.
15. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 75, p3129, 1999.
16. K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, p3017, 1999.
17. J. H. Han, W. S. Yang, J. B. Yoo, C. Y. Park, J. Appl. Phys. Lett. 88, p7363, 2000.
18. Y. C. Choi, D. J. Lee, B. S. Lee, I. T. Hau, W. B. Choi,N. S. Lee, J. M. Kim, Synthetic metals 108, p159, 2000.
19. J. Lu, Carbon Nanotubes─The Material for the new Millennium, in The International Conference on Novel Formation Mechanisms and Physial Properties of Nanostructures, Hsinchu, Taiwan, December 12-20, 1998.
20. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature, 384, p147, 1996.
21. P. Chen, X. Wu, J. Lin, K. L. Tan, Science, 285, p9. 1999.
22. P. Chen et. al, MRS (Material Research Society) 2000 Fall meeting, Bosten.
23. P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 265, p1212,1994.
24. J. Li, C. Papadopolos, J. M. Xu, M. Moskovits, Appl. Phys. Lettt., 75, p367, 1999.
25. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Science, 283, p512, 1999.
26. Z. W. Pan S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, Chem. Phys. Lett., 299, p97, 1999.
27. L. C. Chen, C. Y. When, C. S. Shen, Y. F. Chen, K. H. Chen, International Conference on Metallurgical Coatings and Thin Films 2001.
28. C. J. Lee, J. Park, Appl. Phys. Lettt., 77, p3397, 2000.
29. F. G. Farntain, C. Y. Wan, L. C. Chen, J. J. Wu, K. H. Chen et. al, Appl. Phys. Lett. 76, p2630, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔