(3.239.33.139) 您好!臺灣時間:2021/03/08 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周瑋珊
研究生(外文):Wai-Shan Chou
論文名稱:超過濾結合粉狀活性碳應用於自來水處理之研究
論文名稱(外文):An Application Of Ultrafiltration Combined Powder Activated Carbon Process In Water Treatment
指導教授:張添晉張添晉引用關係
指導教授(外文):Tien-Chin Chang
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木與防災技術研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:102
中文關鍵詞:超過濾粉狀活性碳總有機碳紫外光吸收值薄膜阻塞質量傳送係數粒徑分析天然有機物
外文關鍵詞:UltrafiltrationPowder Activated CarbonTOCUV254Membrane foulingWater mass transfer coefficientparticle sizeNature Organic matters
相關次數:
  • 被引用被引用:8
  • 點閱點閱:462
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:2
薄膜技術可有效去除Giardia及Cryptosporidium等致病胞囊(cysts),且對於細菌(bacteria)的去除率更是低於偵測極限(detectable level)以下。相較於傳統處理程序,薄膜系統佔地較小、操作效能較佳且技術日益更新。緣此,於世界各國之淨水工程應用上皆廣受注目。本文研究方向主要為結合活性碳吸附與超過濾程序,應用於淨水廠之高級處理,比較超過濾(UF)薄膜單元、活性碳吸附單元及結合活性碳吸附與超過濾程序對水中天然有機物之控制能力,以及薄膜阻力對UF單元操作效能之影響,以提供將來UF程序實廠化之評估資料。
實驗結果顯示,水廠傳統程序對原水濁度去除率介於84~98%,而經後續本模廠高級處理其去除效果良好且水質穩定,去除率幾乎皆達99﹪以上,且UF濾液之水質控制於0.1 NTU左右;然而,UF單元對鹼度、導電度及總溶解固體物等水質指標,去除效果有限,與淨水廠採用之傳統混凝-沈澱-過濾程序相較,去除結果相若。
PAC/UF高級處理程序對TOC及UV254等有機物替代指標之去除控制能力最佳,對原水TOC及UV254之去除率分別為63%及50%,結果皆優於單一UF程序及傳統淨水程序。本試驗中相同PAC劑量對TOC的去除效率較UV254明顯,顯示PAC預吸附作用主要為降低清水中之TOC,實驗中粉狀活性碳劑量以20 mg PAC/L處理為佳。
粒徑分析結果顯示,瑪凌坑溪水體有機物種類繁多,且以粒徑尺寸介於0.7μm左右之分子物種比例居多,佔原水濃度93%,然而傳統處理對水體中分子物種之去除有限,對粒徑尺寸大於0.2μm之物種去除率僅為40%。後續高級處理單元則有較完全的去除能力,且以PAC-UF之去除成效最佳,可完全移除。
Both the PAC/UF and single UF process were operated simultaneously. This study which focus on the removal efficiency of natural organic matters (NOMS) and detection membrane resistance during pilot plant treatment via PAC process sequenced by Ultrafiltration process as well as provide an evaluation of the applicability of this PAC/UF process in a full-scale plant.
In the pilot plant study conducted on finished water in Liu-Du water treatment plant, very low turbidity levels were obtained with polyurethane hollow-fiber membrane. The turbidity of the permeate reached levels as low as 0.1NTU. A 99 percent reduction in turbidity was achieved in advanced water treatment process in this study. Nevertheless, UF membrane were slight useful in reducing Alkalinity, Conductivity and TDS in the same water tested.
During this pilot plant study, PAC/UF process has demonstrated a higher efficiency in the reduction of TOC and UV254 as compared to other process such as conventional water treatment and single UF process. The result indicated that PAC/UF process could reduce 63% TOC of raw water and 50% reduction in UV254 was achieved. Meanwhile, the PAC/UF process did enhance species concentrations removal efficiency when PAC dosing was 20mg/L.
On the other hand, this pilot plant practice has shown PAC/UF process is quite capable of eliminating bacterial and viral concentrations in the permeate.
摘要 iv
目次 vi
圖目錄 ix
表目錄 xi
照片目錄 xiii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 水體中天然有機物 4
2.2 活性碳應用於淨水工程之探討 6
2.2.1 吸附現象 6
2.2.2 活性碳之性質 7
2.2.3 影響活性碳吸附之因子 7
2.2.3.1 吸附劑特性 7
2.2.3.2 吸附質特性 8
2.3 薄膜程序應用於淨水工程之探討 9
2.3.1 薄膜技術發展現況 9
2.3.1.1 粉狀活性碳(PAC)結合超過濾(UF)薄膜應用於淨水工程 9
2.3.1.2 MBR結合PAC/UF程序應用於淨水工程 9
2.3.1.3 超過濾作為NF/RO之預處理應用於淨水工程 10
2.3.2 薄膜種類與分離機制 10
2.3.3 薄膜模組 11
2.3.4 薄膜積垢評估 16
2.3.5 薄膜結合活性碳程序對水體中有機物之去除影響 17
2.3.6 UF薄膜程序對水體中無機物之去除影響 18
2.3.7 消毒殺菌 19
2.4 薄膜的質量傳輸 21
2.4.1 薄膜的滲透模式 21
2.4.2 質量傳輸程序 23
2.4.2.1 溶解性物種之傳輸 23
2.4.2.2 粒子物種之傳輸 25
2.4.2.3 濃度極化層中之擴散傳輸作用 26
2.5 薄膜的濾液流通量 27
2.5.1 濾液流通量之衰減 27
2.5.2 濾液流通量衰減成因及薄膜阻塞控制之方法 27
2.5.2.1 薄餅形成 28
2.5.2.2 吸附性阻塞 29
第三章 實驗系統設計與方法 30
3.1 研究方法與流程 32
3.2 實驗設計 34
3.2.1 單一UF薄膜程序設計 34
3.2.2 粉狀活性碳(PAC)搭配UF單元設計 34
3.3 系統設備與藥品 36
3.3.1 UF薄膜設備與操作 36
3.3.2 PAC吸附設備與操作 37
3.3.3 反沖洗設備與操作 39
3.4 水質檢驗方法 40
3.5 品保品管計畫 49
第四章 結果與討論 52
4.1 傳統處理程序與UF單元對影響適飲性物質之去除比較 53
4.1.1 真色度 53
4.1.2 濁度 56
4.1.3 鹼度、導電度及總溶解固體物 59
4.2 UF與PAC單元對有機物之去除比較 62
4.2.1 UF程序之模廠操作 62
4.2.2 UF結合粉狀活性碳(PAC)之模廠操作 72
4.3 薄膜阻塞探討 75
4.3.1薄膜阻塞之種類 75
4.3.1.1 膠體性阻塞 75
4.3.1.2 生物性阻塞 75
4.3.1.3 化學性阻塞 75
4.3.2 薄膜阻力 76
4.4 薄膜積垢評估指標 82
4.4.1薄膜質量傳送係數 82
4.4.2水中粒子計數及粒徑分析 89
第五章 結論與建議 94
5.1 結論 94
5.2 建議 95
參考文獻 96
符號彙編 102
1. Stanley States et al., ”Membrane Filtration as Posttreatment,” J.AWWA.,Vol.92, No.8, pp.59-68,2000.
2. Lâine, J.M., “Membrane Technology and Its Application to Drinking Water Production,” Water Supply, Vol.16, No.1/2, pp.318-355, 1998.
3. Jacangelo, J.G., Chellam Shankararaman and R.R. Trussell, “Membrane Treatment,” Civil Engineering, Vol.68, No.9, pp.42-45, 1998.
4. Jacangelo, J.G., J.M. Laine, E.W. Cummings, and S.S. Adham, “UF with Pretreatment for Removing DBP Precursors,” J.AWWA., Vol.87, pp.100-112, 1995.
5. Adham, S.S., V.L. Snoeyink, M.M. Clark, and C. Anselme, ”Predicting and Verifying TOC Removal by PAC in Pilot Scale UF System,” J.AWWA., Vol.88, No.12, pp.58-68, 1993.
6. Masson M. and G. Deans, “Membrane Filtration and Reverse Osmosis Purification of Sewage: Secondary Effluent for Re-use at Eraring Power Station, Vol.106, pp.11-15, Desalination, 1996.
7. 陳鎧湧,粉狀活性碳對水中微量有機物之研究,成功大學環工所碩士論文,1992。
8. Leenheer, J.A.,”Comprehensive Approach to Preparative Isolation and Fractionation of Dissolved Organic Carbon from Natural Waters and Wastewater,” Environmental Since and Technology, Vol.15, No.5, pp.578-587, 1981.
9. Yiantsios, S.G. and A.J. Karabelas, ”An Experimental Study of Humic Acid and Powdered Activated Carbon Deposition on UF Membranes and Their Removal by Backwashing,” Conference on Membranes in Drinking and Industrial Water Production, Desalination Publication, Vol.1, pp.357-371, 2000.
10. Thurman E. M., Organic Geochemistry of Nature Water, Dordrecht, the Netherlands, pp.15-17, 1985.
11. Anderson C. and J. Majer, “The Removal of Organic Matter from Water Supplier by Ion-Exchange,” Office of Water Research and Technology, Washington, D.C., 1977.
12. Tambo, N. and T. Kamei, ”Treatability Evaluation of General Organic Matter, Matrix Conception and Its Application for A Regional Water and Wastewater System,” Water Research, Vol.42, No.39,1978.
13. Sonnendberg, L.B., J.D. Johnson, and R.F. Christman,” Chemical Degradation of Humic Substances for Structural Characterization,” American Chemical Society, pp.1-23, 1988.
14. Rulin Bian et al., “Effect of Coagulation Pretreatment on Membrane Fouling and Removal Efficiency of Natural Organic Materials in Ultrafiltration Process,” pp1154-1521, Conference on 6th IAWQ Asia-Pacific, 1997.
15. Trussell, R.R. and A.R. Trussell, ”Evaluation and Treatment of Synthetic Organic in Drinking Water Supplies,” JAWWA., Vol.72, pp.458-470,1980.
16. 趙承琛,「界面科學基礎」,頁19-31,復文書局,1985。
17. McCabe, W.L., J.C. Smith and Harrit, Unit Operation of Chemical Engineering, McGraw-Hill, Inc., 1985.
18. 蔣本基,「比較活性碳及活性碳纖維對揮發性有機物之吸附及再生效率之研究I」,行政院國科會專題研究報告,NSC76-0410-E002-23,1987。
19. Reynolds, T.D. and P.A. Richards, Unit Operations and Processes in Environmental Engineering, 2nd ed., PWS Publishing Company, 1996.
20. 蔣本基,「利用廢棄污泥研製吸附劑以去除有機蒸氣之研究」,國立台灣大學環境工程研究所研究報告(II),No.128, 1986.
21. 陳重男、倪振鴻、林俊德、黃財榮,「薄膜程序在自來水淨水工程上之應用 I」,中華民國自來水協會研究報告,2000.6.
22. James, M. Montgomery Consulting Engineers, Inc., Water Treatment Principles and Design, Wiley — Interscience, 1985.
23. Gregg, S.J. and K.W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London, 1982.
24. 尤建華,「利用廢棄物研製吸附劑以去除有機溶劑蒸氣之可行性研究」,國立台灣大學環境工程研究所碩士論文,1984.
25. Bansal, R.C., J. Donnet, and F. Stoeckli, Manufacture of Active Carbon, Marcel Dekker, Inc., New York, pp.1-27, 1988.
26. Faust, S.D. and O.M. Aly., Adsorption Processes for Water Treatment, Butterworth Publishers, Montvale Avenus, 1987.
27. Lâine, J.M., D. Vial, and P. Moulart,” Status after 10 Years of Operation — Overview of UF Technology Today,” Vol.1, pp.17-25, Conference on Membranes in Drinking and Industrial Water Production, 2000.
28. Mallevialle, J., P.E. Odendaal and M.R. Wiesner, ”The Emergence of Membranes in Water and Wastewater Treatmen,” , Water Treatment Membrane Process, McGraw-Hill, Singapore, 1996.
29. Jacangelo, J.G., E.M. Aieta, K.E. Carn, E.W. Cummings, and J. Mallevialle, “Asseing Hollow-Fiber Ultrafiltration for Particulate Removal,” J.AWWA., Vol.81, No.11, pp.68-75, 1989.
30. Taylor, J. S., D. M. Thompson, B. R. Snyder, J. Less, and L. A. Mulford, “Cost and Performance Evaluation of In-Plant Trihalomethane Control Techniques,” EPA/600/SZ-85/138. Cincinnati, OH, USEPA Water Engineering Research Laboratory, 1986.
31. Anselme, C. and E.P. Jacobs, ”Ultrafiltration,” Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R.Wiesner, McGraw-Hill, Singapore, 1996.
32. Aptel, P. and C.A. Buckley, ”Categories of Membrane Operations,” Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R.Wiesner, McGraw-Hill, 1996, Singapore.
33. Rautenbach, R and R. Albrecht, Membrane Processes, John Wiley, New York, 1989.
34. Nilson, J.A. and F.A. DiGian, ”Influence of NOM Composition on Nanofiltration,” J.AWWA., Vol.88, No.5, pp.53-66, 1996.
35. Chang, Y-J et al., ”Combined Adsorption-UF Process Increases TOC Removal,” J.AWWA., Vol.90, No.5, pp90-102, 1998.
36. Yoshihiko M., A. Yuasa and F. Colas, “Effect of Operational Modes on the Removal of a Synthetic Organic Chemical by Powdered Activated Carbon During Ultrafiltration,” Conference on Membranes in Drinking and Industrial Water Production, Desalination Publication, Vol.1, pp.215-224, 2000.
37. Anne M.J., M. C. Mark, “Using PAC-UF to Treat A Low Quality Surface Water,” J.AWWA., Vol.90, No.11, pp.83-95, 1998.
38. Campous, C., J.M. Lâine and Baudin, “Adsorption Performance of Powdered Activated Carbon Ultrafiltration Systems,” Conference on Membranes in Drinking and Industrial Water Production, Desalination Publication, Vol.1, pp.189-195, 2000.
39. Buckleyo, C.A. and E.H. Quentin, ”Membrane Application: A Contaminant-Based Perspective,” Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R.Wiesner, McGraw-Hill, Singapore, 1996.
40. Watson, B.M. and C.D. Hornburg, ”Low Energy Membrane Nanofiltration for Removal Color, Organics and Hardness from Drinking Water Supplies,” Desalination Vol.72, pp.11-22, 1989.
41. Chin, K.K. and S.L. Ong, ”A Study of Removal of Sewage for Industrial Waters,” Water Science Technology, Vol.23 (Kyoto), pp2181-2187.
42. Waypa, J.J., M. Elimelech, and J.G. Hering, “Arsenic Removal by RO and NF Membranes,” JAWWA., Vol.89, No.10, p.102.
43. 李孫榮、張錦松、張錦輝、陳建民、曾如娟,”環工單元操作”,高立圖書有限公司,中華民國八十四年一月。
44. Anon, “Water Industry Looks Ahead on Disinfection By-products,”, Ends Report, 1993a.
45. Ellender, R.D. and B.H. Sweet, ”Never membrane Concentration Processes and Their Application to The Detection of Viral Pollution of Water,” Water Research, Vol.6, pp.741-746.
46. Mark, R.W. and P. Aptel, ”Mass Transport and Permeate Flux and Fouling in Pressure-Driven Processes,” Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R.Wiesner, McGraw-Hill, Singapore,1996.
47. Chellam, S., and M.R. Wiesner, ”Particle Transport in clean Membrane Filters in Laminar Flow,” Environmental Science and Technology, Vol.26, No.8, pp.1611-1621, 1992.
48. Davis, R.H. and D.T. Leighton, “Shear-Induced Transport of Particle Layer Along a Porous Wall,” Chemical Engineering Science, Vol.42, No.2, pp.275-281, 1987.
49. Remero, C.A. and R.H. Davis, “Global Model of Cross flow Microfiltration Based on Hydrodynamic Particle Diffusion,” Journal of Membrane Science, Vol.39, pp.157-185, 1988.
50. Lâine, J.M., J.P. Hagstrom, M.M. Clark, and J. Mallevialle, “Effects of Ultrafiltration Membrane Technology Composition,” J.AWWA, Vol.81, No.11, pp.61-67, 1989.
51. Turcaud, V. L. et al., ”Coagulation Pretreatment for Ultrafiltration of a Surface water,” J.AWWA, Vol.82, No.12, pp.76-81, 1990.
52. 黃政賢,”給水工程”,高立圖書有限公司,頁26,中華民國八十六年一月。
53. Bersillon, J.C., C. Anselme, J. Mallevialle, and F. Fiessinger, “Ultrafiltration Applied to Drinking Water Treatment: Case of a Small System,” Water Nagoya-ASPAC, pp.209-219, 1989.
54. 潘勇文,結合臭氧與活性碳程序於淨水工程之應用,台北科技大學土木與防災研究所碩士論文,2000。
55. Semmens, M.J., and A.B. Staples, “The nature of Organics Removed During Treatment of Mississippi River Water,” J.AWWA, Vol.78, No.2, pp.76-81, 1986.
56. T. Suzuki, Y. Watanabe, G. Ozawa and S.Ikeda, “ Removal of Soluble organics and manganese by a hybrid MF hollow fiber membrane system,” Desalination, Vol.117, pp.119-130.
57. Technical Support Division Office of Ground Water and Surface Water, ICR Manual for Bench and Pilot-Scale Treatment Studies, USEPA, Cincinnati, OH 45268,1996.
58. Morcel Mulder, Basic Principles of Membrane Technology, Center for Membrane Science and Technology, University of Twente, The Netherlands, 1991.
59. Lâine, J.M., and C. Anselme,” Ultrafiltration Technology Status Overview in Municipal Drinking Watertreatment,” Conference on 206th IWSA, South Africa, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔