中文部分
1.王俊傑,財務危機預警模式-以現金流量觀點,國立台北大學企業管理研究所未出版碩士論文,民國89年。2.池千駒,運用財務性及非財務性資訊建立我國上市公司財務預警模式,國立成功大學會計學研究所未出版碩士論文,民國88年。3.吳秀娟,企業市場價值與淨值差異影響因素之研究-以我國資訊電子業為例,國立政治大學會計學研究所未出版碩士論文,民國89年。4.李俊毅,應用灰色預測理論與類神經網路於企業財務危機預警模式之研究,義守大學管理科學研究所未出版碩士論文,民國88年。5.李洪慧,動態化財務預警模型之研究-以證券經紀商為例,東吳大學企業管理研究所未出版碩士論文,民國87年。6.卓怡如,財務危機預警之建立─以上市及未上市公司為例,國立台灣大學財務金融究所未出版碩士論文,民國85年。7.林文修,演化式類神經網路為基底的企業危機診斷模型:智慧資本之應用,國立中央大學資訊管理研究所未出版博士論文,民國89年。8.洪榮華,台灣地區股票上市公司盈虧預測模式之建立與其資訊價值,國立政治大學企業管理研究所未出版碩士論文,民國82年。9.施並洲,類神經網路、案例推理法、灰色關連分析於財務危機之應用,國立中央大學工業管理研究所未出版碩士論文,民國88年。10.紀榮泰,財務危機理論與預警模式之研究,淡江大學會計研究所未出版碩士論文,民國89年。11.張正忠,台灣上市公司財務危機預警模式之建立-瀑布羅吉斯模型之應用,國立交通大學經營管理研究所未出版碩士論文,民國89年。12.張肇顯,以智慧資本為基礎之策略性人力資源管理實務研究─以台灣地區入口網站為例,輔仁大學管理學研究所未出版碩士論文,民國89年。13.莊東昇,我國財務困境公司之重整行為與其資本結構之相關性研究,國立中興大學會計學學研究所未出版碩士論文,民國84年。14.郭瓊宜,類神經網路在財務危機預警模式之應用,淡江大學管理科學研究所未出版碩士論文,民國83年。15.陳玉玲,組織內人力資本的蓄積─智慧資本管理之觀點,國立中央大學人力資源管理研究所未出版碩士論文,民國88年。16.陳隆麟,現代財務管理:理論與應用,華泰書局,台北,民國81年。
17.陳順宇,多變量分析,華泰書局,台北,民國87年。
18.陳肇榮,運用財務比率預測企業危機之實證研究,國立政治大學企業管理研究所未出版博士論文,民國72年。19.陳鳳儀,臺灣上市公司財務困難預測之研究,國立台灣大學會計學研究所未出版碩士論文,民國84年。20.陳蘊如,財務危機預警制度之研究,國立政治大學會計學研究所未出版碩士論文,民國80年。21.黃秀敏,城際客運選擇市場區隔之研究,國立成功大學交通管理科學研究所未出版碩士論文,民國87年。22.黃宛華,資訊服務智慧資本之研究,國立政治大學科技管理研究所未出版碩士論文,民國89年。23.黃翔祺,網際網路企業智慧資本研究,國立政治大學科技管理研究所未出版碩士論文,民國89年。24.黃聖傑,樹狀迴歸的方法與其應用在調查資料之分析,國立成功大學統計學研究所未出版碩士論文,民國83年。25.潘玉葉,台灣上市公司財務危機預警分析,淡江大學管理科學研究所未出版博士論文,民國79年。26.賴季柔,企業失敗危機的預測-現金管理模式與現金流量模式的比較,輔仁大學管理研究所未出版碩士論文,民國89年。27.儲蕙文,我國上市公司財務預警制度之研究,國立政治大學會計研究所未出版碩士論文,民國85年。英文部分
1.Agor, W. H., “The measurement, use, and development of intellectual capital to increase public sector productivity,” Public Personnel Management, Vol. 27, No.2 (1997), pp. 175-186.
2.Ahn, B. S., Cho, S. S. and Kim, C. Y., “The integrated methodology of rough set theory and artificial neural network for business failure prediction,” Expert Systems with Applications, Vol. 18 (2000), pp. 65-74.
3.Altman, E. I., “Financial ratios discriminant analysis, and the prediction of corporate bankruptcy,” Journal of Finance, Vol. 23 (1968), pp. 589-609.
4.Altman, E. I., Marco, G. V. and Varetto, F., “Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks,” Journal of Banking and Finance, Vol. 18 (1994), pp. 505-529.
5.Beaver, W. H., “Financial ratios and predictors of failure,” Journal of Accounting Research, Vol. 4 (1966), pp. 71-111.
6.Beaver, W. H., “Market prices, financial ratios, and the prediction of failure,” Journal of accounting Research, Vol. 6 (1968), pp. 179-192
7.Berry, M. J. A. and Linoff, G., Data Mining Technique for Marketing, Sale, and Customer Support, Wiley Computer: New York (1997).
8.Blum, M., “Failing company discriminant analysis,” Journal of Accounting Research, Vol. 12 (1974), pp. 1-25.
9.Bontis, N., “Intellectual capital: an exploratory study that develops measures and models,” Management Decision, Vol. 36, No. 2 (1998), pp. 63-76.
10.Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J., Classification and Regression Trees, Wadsworth: Belmont (1984).
11.Brooking, A., Board, P. and Jones, S., “The predictive potential of intellectual capital,” International Journal of Technology Management, Vol. 16, No. 2 (1998), pp. 115-125.
12.Chung, H. M., “Special section: data mining,” Journal of Management Information Systems, Vol. 16, No. 1 (1999), pp. 11-16.
13.Coat, P. K. and Fant, L. F., “Recognizing financial distress patterns using a neural network tool,” Financial Management, Vol. 12 , No. 3 (1993), pp. 142-155.
14.Cooper, D. R. and Emory, C. W., Business Research Method, Dryden: Orlando (1995).
15.Craven, M. W. and Shavlik, J. W., “Using neural networks for data mining,” Future Generation Computer Systems, Vol. 13 (1997), pp. 221-229.
16.Davies, P. C., “Design issues in neural network development,” NEUROVEST Journal, Vol. 5 (1994), pp. 21-25.
17.Deakin, E., “A discriminant analysis of predictors of business failure,” Journal of Accounting Research, Vol. 10 (1972), pp. 167-179.
18.Desai, V. S., Crook, J. N. and Jr, G. A., “A comparison of neural networks and linear scoring models in the credit union environment,” European Journal of Operational Research, Vol. 95, No. 1 (1996), pp. 24-37.
19.Dillon, W. R. and Goldstein, M., Multivariate Analysis Methods and Applications, Wiley: New York (1984).
20.Edvinsson L. and Malone M. S., Intellectual Capital, HarperCollins Publishers, Inc.: New York (1997).
21.Fish, K. E., Barnes, J. H. and Aiken, M. W., “Artificial neural networks: a new methodology for industrial market segmentation,” Industrial Marketing Management, Vol. 24, No. 5 (1995), pp. 431-438.
22.Foster, G., Financial Statement Analysis, Prentice-Hall Inc.: Englewood Cliffs (1978).
23.Freeman, J. A. and Skapura, D. M., Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company: New York, (1992).
24.Gilson, S. C., “Management turnover and financial Distress,” Journal of Financial Economics, Vol. 25 (1989), pp. 241-262.
25.Griffin, W. H., Fisher, N. I., Friedman, J. H. and Ryan, C. G., “Statistical techniques for the classification of chromites in diamond exploration samples,” Journal of Geochemical Exploration, Vol. 59 (1997), pp. 233-249.
26.Grossman, R. L. and Poor, H. V., “Optimization driven data mining and credit scoring,” Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering, (1996), pp. 104-110.
27.Guthrie, J., “The management, measurement and the reporting of intellectual capital,” Journal of Intellectual Capital, Vol. 2, No. 1 (2001), pp. 27-41.
28.Hornik, K., Stinchcombe, M. and White, H., “Multilayer feedforward networks e Universal Approximations,” Neural Networks, Vol. 2 (1989), pp. 336-359.
29.Johnson, R. A. and Wichern, D. W. Applied Multivariate Statistical Analysis, Prentice-Hall Inc.: New York (1998).
30.Johnson, W. H. A., “An integrative taxonomy of intellectual capital: measuring the stock and flow of intellectual capital components in the firm,” International Journal of Technology Management, Vol. 18, No. 6 (1999), pp. 562-575.
31.Joia, L. A., “Measuring intangible corporate assets,” Journal of Intellectual Capital, Vol. 1, No. 1 (2000), pp. 68-84.
32.Kaplan, R. S. and Norton, D. P., “Using the balanced scorecard as a strategic management system,” Harvard Business Review, Vol. 74, No. 1 (1996), pp. 75-85.
33.Kass, G. V., “An exploratory technique for investigating large quantities of categorical data,” Applied Statistics, Vol. 29 (1980), pp. 119-127.
34.Kim, J. C., Kim, D. H., Kim, J. J., Ye, J. S. and Lee, H. S. “Segmenting the Korean housing market using multiple discriminant analysis,” Construction Management & Economics, Vol. 18, No.1 (2000), pp. 45-54
35.Koh, H. C. and Tan S. S., “A neural network approach to the prediction of going concern status,” Accounting and Business Research, Vol. 29, No. 3 (1999), pp. 211-216.
36.Kuhnert, P. M., Do, K. A. and McClure R., “Combining non-parametric models with logistic regression: an application to motor vehicle injury data,” Computational Statistics and Data Analysis, Vol. 34 (2000), pp. 371-386.
37.Lee, G., Sung, T. K. and Chang, N., “Dynamics of modeling in data mining: interpretive approach to bankruptcy prediction,” Journal of Management Information Systems, Vol. 16, No. 1 (1999), pp. 63-85.
38.Lee, H., Jo, H. and Han, I. “ Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis,” Expert Systems With Applications, Vol. 13, No. 2 (1997), pp. 97-108.
39.Loh, W. and Vanichsetakul, N., “Tree-structured classification via generalized discriminant analysis,” Journal of the American Statistical Association, Vol. 83 (1988), pp. 715-728.
40.Lynn, B. E., “Performance evaluation in the new economy: bringing the measurement and evaluation of intellectual capital into the management planning and control system,” International Journal of Technology Management, Vol. 16, No. 2 (1998), pp. 162-176.
41.Lynn, B. E., “Culture and intellect capital management: a key factor in successful ICM,” International Journal of Technology Management, Vol. 18, No. 5 (1999), pp. 590-603.
42.Malhotra, M. K., Sharma, S. and Nair, S. S. “Decision making using multiple models,” European Journal of Operational Research, Vol. 114, No. 1 (1999), pp. 1-14.
43.Markham, I. S., Mathieu, R. G., and Waray B. A., “A rule induction approach for determining the number of kanbans in a just-in-time production system,” Computers & Industrial Engineering, Vol. 34, No. 4 (1998), pp. 717-727.
44.Masoulas, V., “Organizational requirements definition for intellectual capital management,” International Journal of Technology Management, Vol. 16, No. 2 (1998), pp. 126-143.
45.McGurr, P. T. and DeVaney, S. A., “Predicting business failure of retail firms: an analysis using mixed industry model,” Journal of Business Research, Vol. 43 (1998), pp. 169-176.
46.Morgan, J. N. and Sonquist, J. A., “Problem in the analysis of survey data and a proposal,” Journal of the American Statistical Association, Vol. 58 (1963)
47.Odom, M. D., “A neural network model for bankruptcy prediction,” International Joint Conference Neural Networks, Vol. 2 (1990), pp. 163-168.
48.Ohlson, J. A., “Financial ratios and the probabilistic prediction of bankruptcy,” Journal of Accounting Research, Vol. 18, No. 1 (1980), pp. 109-131.
49.Ohmann, C., Moustakis, V., Yang, Q. and Lang, K., “Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain,” Artificial Intelligence in Medicine, Vol. 8, No. 1 (1996), pp. 23-36.
50.Qnet 97 — Neural Network Modeling for Windows 95/98/NT, Vesta Services: Winnetka (1998).
51.Quinlan, W. F. and Hansen, J. V., “Inducing rules for expert system development,” Management Science, Vol. 34 (1998), pp. 1403-1415
52.Quinlan, J. R., “Induction of decision trees,” Machine Learning, Vol. 1 (1986), pp. 81-106.
53.Ross, J., Ross, G., Dragonetti, N. C., and Edvinsson, L., Intellectual Capital-Navigating the New Business Landscape, New York University Press: New York (1997).
54.Rumelhart, E., Hinton, G. E. and Williams, R. J., Learning internal representations by error propagation in parallel distributed processing, MIT Press: Cambridge, (1985), pp. 318-362.
55.Salchenberger, L. M., Cinar, E. M. and Lash, N. A., “Neural networks: a new tool for predicting thrift failures,” Decision Sciences, Vol. 23, No. 4 (1992), pp. 899-916.
56.Sanchez, M. S. and Sarabia, L. A. “Efficiency of multi-layered feed-forward neural networks on classification in relation to linear discriminant analysis, quadratic discriminant analysis and regularized discriminant analysis,” Chemometrics and Intelligent Laboratory Systems, (1995), pp. 287-303.
57.Sharma, S., Applied Multivariate Techniques, Wiley: New York (1996).
58.Sorensen, E. H., Miller, K. L. and Ooi, C. K., “The decision tree approach to stock selection,” The Journal of Portfolio Management, Vol. 27, No. 1 (2000), pp.42-52.
59.SPSS 1997 — Statistic Modeling for Windows 95/98/NT, SPSS Inc.: New York (1998).
60.Stewart, T. A., “Your company’s most valuable asset: Intellectual Capital,” Fortune, Vol. 130, No. 7 (1994), pp. 68-73.
61.Stewart, T. A., Intellectual Capital: The New Wealth of Organizations, Bantam Doubleday Dell Publishing Group, Inc.: New York, (1997).
62.Sung, T.K., Chang, N., Lee, G. “Dynamics of modeling in data mining; interpretive approach to bankruptcy prediction,” Journal of Management Information Systems, Vol. 16, No. 1 (1999), pp. 63-85.
63.Sveiby, K. E., The New Organizational Wealth-Managing and Measuring Knowledge-Based Assets, Big Apple Tuttle-Mori Agency, Incm Co.: New York (1997).
64.Sveiby, K. E., “Intellectual capital: thinking ahead,” Australian CPA, Vol. 68, No. 5 (1998), pp. 18-22.
65.Tacq, J., Multivariate Analysis Techniques in Social Science Research, SAGE: London (1997).
66.Tam, K. and Kiang, M., “Managerial applications of neural networks: the case of bank,” Management Science, Vol. 38, No. 7 (1992), pp. 926-947.
67.Trevino, L. J., and Daniels, J. D., “FDI theory and foreign direct investment in the United States: a comparison of investors and non-investors,” International Business Review, Vol.4, No. 2 (1995), pp. 177-194.
68.Ulrich, D., “Intellectual capital = competence * commitment,” Sloan Management Review, Vol. 39, No. 2 (1998), pp. 15-26.
69.Vellido, A., Lisboa, P. J. G. and Vaughan, J., “Neural networks in business: a survey of applications (1992-1998),” Expert Systems With Applications, Vol. 17 (1999), pp. 51-70.
70.Zhang, G., Patuwo, B. E. and Hu, M. Y., “Forecasting with artificial neural networks: the state of the art,” International Journal of Forecasting, Vol. 14, No. 1 (1998), pp. 35-62.