跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡德年
研究生(外文):Te-Nien Chien
論文名稱:智慧資本構面下企業危機診斷模式之建構-類神經網路、分類迴歸樹與鑑別分析方法之應用
論文名稱(外文):Constructing Corporate Distress Diagnosis Model for Intellectual Capital Dimensions-Applications of Neural Network, CART and Discriminant Analysis
指導教授:邱志洲邱志洲引用關係
指導教授(外文):Chih-Chou Chiu
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:商業自動化與管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:74
中文關鍵詞:企業危機診斷智慧資本分類迴歸樹鑑別分析類神經網路
外文關鍵詞:Enterprise Distress DiagnosisIntellectual CapitalCARTDiscriminant AnalysisNeural Networks
相關次數:
  • 被引用被引用:63
  • 點閱點閱:644
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:8
  隨著知識經濟時代的出現,促使企業競爭優勢的依據不再是傳統的有形資產多寡,還必需包含企業的無形資產。而近年來,由於整體經濟環境的快速變遷,造成企業財務危機發生的可能性隨之逐年增加,因此,建立一個有效的企業危機診斷模式,是當前學術界與實務界的相當重要課題之一。本研究所提出的兩種演化式類神經網路分類技術,針對企業財務資本與智慧資本相關資料進行企業危機診斷模式的建構,診斷企業危機發生的可能性。
  根據第一個演化式分類技術-整合分類迴歸樹之類神經網路模式所求得的結果顯示,隸屬於高知識密集的電子資訊相關產業,在企業經常失敗的原因中,除了傳統的財務構面指標外,亦受到智慧資本構面指標的影響。此外,根據第二個演化式分類技術-整合鑑別分析與類神經網路模式所求得之結果,我們也同樣發現,財務與智慧資本構面指標皆能明顯反應企業經營情況。再者,本研究所提之兩種整合模式,對於企業危機辨識的精準度與速度,確實能得到較佳的成效,亦即整合分類迴歸樹之類神經網路模式,以及整合鑑別分析與類神經網路模式,能有效的降低企業危機診斷的誤判情況,並提供更為快速且精確的判別結果。
 In order to forecast the financial distress, companies always establish a predictive model of financial distress by expanding the samples and the definition of financial distress. However, judging from the definition of financial distress, the meaning of financial distress company lies on the stock companies listed in Taiwan Stock Exchange Corporations. The main reason for this incorrect judgment is the ignorance of some valuable indicators. We have witnessed a growth in ‘knowledge-based companies’, those that have realized that the knowledge encompassed within the organization is a valuable asset, and its demise can represent a significant risk to the continued safe operation of the company. ‘Intellectual Capital, IC’ is defined as the difference between the book value of the company and the amount of money which someone is prepared to pay for it. Intellectual capital represents intangible assets which frequently do not appear on the balance sheet. Today, to measure the assets of companies, it is very important to notice that IC’s value and strength tend to vary depending on the goals of the organization. The objective of the proposed study is to explore the performance of enterprise distress diagnosis by two different approaches.
 In the first approach, we integrate the artificial neural networks with Classification and Regression Trees (CART) technique. And then, the traditional statistical method, discriminant analysis, is integrated with neural network. The results indicate that the IC indicators are very important in the enterprise distress diagnosis, especially in high-tech enterprise, by using the first proposed combined approach. In additions, we find out that both traditional financial indicators and IC indicators significantly influence the diagnostic correctness of enterprise distress by applying the second approach. Moreover, results from the present study indicate that the proposed combined approaches predict much more accurate and converge much faster than that the conventional neural network approach. In other words, without such good initial estimate from CART or discriminant analysis, a neural network takes a long time to achieve an accurate result.
摘要i
誌謝iv
表目錄vii
圖目錄viii
第一章 緒論1
第二章 整合分類迴歸樹與類神經網路建構企業危機診斷模式4
 2.1 緒論4
 2.2 文獻探討6
  2.2.1 企業危機6
  2.2.2 智慧資本7
  2.2.3 分類迴歸樹9
  2.2.4 類神經網路11
 2.3 研究方法13
  2.3.1 分類迴歸樹14
  2.3.2 倒傳遞類神經網路15
 2.4 實證研究18
  2.4.1 所有企業19
  2.4.2 電子資訊相關產業25
 2.5 結論與建議33
第三章 整合鑑別分析與類神經網路在企業危機診斷之應用34
 3.1 緒論34
 3.2 文獻探討36
  3.2.1 智慧資本36
  3.2.2 企業危機38
  3.2.3 鑑別分析39
  3.2.4 類神經網路40
 3.3 研究方法42
  3.3.1 鑑別分析42
  3.3.2 倒傳遞類神經網路43
 3.4 實證研究46
  3.4.1 研究設計46
  3.4.2 實證結果47
 3.5 結論與建議53
第四章 結論55
參考文獻57
 中文部分57
 英文部分58
附錄65
 附錄A 研究企業樣本總表65
 附錄B 研究變數總表66
 附錄C 電子業企業資料分配表67
中文部分
1.王俊傑,財務危機預警模式-以現金流量觀點,國立台北大學企業管理研究所未出版碩士論文,民國89年。
2.池千駒,運用財務性及非財務性資訊建立我國上市公司財務預警模式,國立成功大學會計學研究所未出版碩士論文,民國88年。
3.吳秀娟,企業市場價值與淨值差異影響因素之研究-以我國資訊電子業為例,國立政治大學會計學研究所未出版碩士論文,民國89年。
4.李俊毅,應用灰色預測理論與類神經網路於企業財務危機預警模式之研究,義守大學管理科學研究所未出版碩士論文,民國88年。
5.李洪慧,動態化財務預警模型之研究-以證券經紀商為例,東吳大學企業管理研究所未出版碩士論文,民國87年。
6.卓怡如,財務危機預警之建立─以上市及未上市公司為例,國立台灣大學財務金融究所未出版碩士論文,民國85年。
7.林文修,演化式類神經網路為基底的企業危機診斷模型:智慧資本之應用,國立中央大學資訊管理研究所未出版博士論文,民國89年。
8.洪榮華,台灣地區股票上市公司盈虧預測模式之建立與其資訊價值,國立政治大學企業管理研究所未出版碩士論文,民國82年。
9.施並洲,類神經網路、案例推理法、灰色關連分析於財務危機之應用,國立中央大學工業管理研究所未出版碩士論文,民國88年。
10.紀榮泰,財務危機理論與預警模式之研究,淡江大學會計研究所未出版碩士論文,民國89年。
11.張正忠,台灣上市公司財務危機預警模式之建立-瀑布羅吉斯模型之應用,國立交通大學經營管理研究所未出版碩士論文,民國89年。
12.張肇顯,以智慧資本為基礎之策略性人力資源管理實務研究─以台灣地區入口網站為例,輔仁大學管理學研究所未出版碩士論文,民國89年。
13.莊東昇,我國財務困境公司之重整行為與其資本結構之相關性研究,國立中興大學會計學學研究所未出版碩士論文,民國84年。
14.郭瓊宜,類神經網路在財務危機預警模式之應用,淡江大學管理科學研究所未出版碩士論文,民國83年。
15.陳玉玲,組織內人力資本的蓄積─智慧資本管理之觀點,國立中央大學人力資源管理研究所未出版碩士論文,民國88年。
16.陳隆麟,現代財務管理:理論與應用,華泰書局,台北,民國81年。
17.陳順宇,多變量分析,華泰書局,台北,民國87年。
18.陳肇榮,運用財務比率預測企業危機之實證研究,國立政治大學企業管理研究所未出版博士論文,民國72年。
19.陳鳳儀,臺灣上市公司財務困難預測之研究,國立台灣大學會計學研究所未出版碩士論文,民國84年。
20.陳蘊如,財務危機預警制度之研究,國立政治大學會計學研究所未出版碩士論文,民國80年。
21.黃秀敏,城際客運選擇市場區隔之研究,國立成功大學交通管理科學研究所未出版碩士論文,民國87年。
22.黃宛華,資訊服務智慧資本之研究,國立政治大學科技管理研究所未出版碩士論文,民國89年。
23.黃翔祺,網際網路企業智慧資本研究,國立政治大學科技管理研究所未出版碩士論文,民國89年。
24.黃聖傑,樹狀迴歸的方法與其應用在調查資料之分析,國立成功大學統計學研究所未出版碩士論文,民國83年。
25.潘玉葉,台灣上市公司財務危機預警分析,淡江大學管理科學研究所未出版博士論文,民國79年。
26.賴季柔,企業失敗危機的預測-現金管理模式與現金流量模式的比較,輔仁大學管理研究所未出版碩士論文,民國89年。
27.儲蕙文,我國上市公司財務預警制度之研究,國立政治大學會計研究所未出版碩士論文,民國85年。
英文部分
1.Agor, W. H., “The measurement, use, and development of intellectual capital to increase public sector productivity,” Public Personnel Management, Vol. 27, No.2 (1997), pp. 175-186.
2.Ahn, B. S., Cho, S. S. and Kim, C. Y., “The integrated methodology of rough set theory and artificial neural network for business failure prediction,” Expert Systems with Applications, Vol. 18 (2000), pp. 65-74.
3.Altman, E. I., “Financial ratios discriminant analysis, and the prediction of corporate bankruptcy,” Journal of Finance, Vol. 23 (1968), pp. 589-609.
4.Altman, E. I., Marco, G. V. and Varetto, F., “Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks,” Journal of Banking and Finance, Vol. 18 (1994), pp. 505-529.
5.Beaver, W. H., “Financial ratios and predictors of failure,” Journal of Accounting Research, Vol. 4 (1966), pp. 71-111.
6.Beaver, W. H., “Market prices, financial ratios, and the prediction of failure,” Journal of accounting Research, Vol. 6 (1968), pp. 179-192
7.Berry, M. J. A. and Linoff, G., Data Mining Technique for Marketing, Sale, and Customer Support, Wiley Computer: New York (1997).
8.Blum, M., “Failing company discriminant analysis,” Journal of Accounting Research, Vol. 12 (1974), pp. 1-25.
9.Bontis, N., “Intellectual capital: an exploratory study that develops measures and models,” Management Decision, Vol. 36, No. 2 (1998), pp. 63-76.
10.Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J., Classification and Regression Trees, Wadsworth: Belmont (1984).
11.Brooking, A., Board, P. and Jones, S., “The predictive potential of intellectual capital,” International Journal of Technology Management, Vol. 16, No. 2 (1998), pp. 115-125.
12.Chung, H. M., “Special section: data mining,” Journal of Management Information Systems, Vol. 16, No. 1 (1999), pp. 11-16.
13.Coat, P. K. and Fant, L. F., “Recognizing financial distress patterns using a neural network tool,” Financial Management, Vol. 12 , No. 3 (1993), pp. 142-155.
14.Cooper, D. R. and Emory, C. W., Business Research Method, Dryden: Orlando (1995).
15.Craven, M. W. and Shavlik, J. W., “Using neural networks for data mining,” Future Generation Computer Systems, Vol. 13 (1997), pp. 221-229.
16.Davies, P. C., “Design issues in neural network development,” NEUROVEST Journal, Vol. 5 (1994), pp. 21-25.
17.Deakin, E., “A discriminant analysis of predictors of business failure,” Journal of Accounting Research, Vol. 10 (1972), pp. 167-179.
18.Desai, V. S., Crook, J. N. and Jr, G. A., “A comparison of neural networks and linear scoring models in the credit union environment,” European Journal of Operational Research, Vol. 95, No. 1 (1996), pp. 24-37.
19.Dillon, W. R. and Goldstein, M., Multivariate Analysis Methods and Applications, Wiley: New York (1984).
20.Edvinsson L. and Malone M. S., Intellectual Capital, HarperCollins Publishers, Inc.: New York (1997).
21.Fish, K. E., Barnes, J. H. and Aiken, M. W., “Artificial neural networks: a new methodology for industrial market segmentation,” Industrial Marketing Management, Vol. 24, No. 5 (1995), pp. 431-438.
22.Foster, G., Financial Statement Analysis, Prentice-Hall Inc.: Englewood Cliffs (1978).
23.Freeman, J. A. and Skapura, D. M., Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company: New York, (1992).
24.Gilson, S. C., “Management turnover and financial Distress,” Journal of Financial Economics, Vol. 25 (1989), pp. 241-262.
25.Griffin, W. H., Fisher, N. I., Friedman, J. H. and Ryan, C. G., “Statistical techniques for the classification of chromites in diamond exploration samples,” Journal of Geochemical Exploration, Vol. 59 (1997), pp. 233-249.
26.Grossman, R. L. and Poor, H. V., “Optimization driven data mining and credit scoring,” Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering, (1996), pp. 104-110.
27.Guthrie, J., “The management, measurement and the reporting of intellectual capital,” Journal of Intellectual Capital, Vol. 2, No. 1 (2001), pp. 27-41.
28.Hornik, K., Stinchcombe, M. and White, H., “Multilayer feedforward networks e Universal Approximations,” Neural Networks, Vol. 2 (1989), pp. 336-359.
29.Johnson, R. A. and Wichern, D. W. Applied Multivariate Statistical Analysis, Prentice-Hall Inc.: New York (1998).
30.Johnson, W. H. A., “An integrative taxonomy of intellectual capital: measuring the stock and flow of intellectual capital components in the firm,” International Journal of Technology Management, Vol. 18, No. 6 (1999), pp. 562-575.
31.Joia, L. A., “Measuring intangible corporate assets,” Journal of Intellectual Capital, Vol. 1, No. 1 (2000), pp. 68-84.
32.Kaplan, R. S. and Norton, D. P., “Using the balanced scorecard as a strategic management system,” Harvard Business Review, Vol. 74, No. 1 (1996), pp. 75-85.
33.Kass, G. V., “An exploratory technique for investigating large quantities of categorical data,” Applied Statistics, Vol. 29 (1980), pp. 119-127.
34.Kim, J. C., Kim, D. H., Kim, J. J., Ye, J. S. and Lee, H. S. “Segmenting the Korean housing market using multiple discriminant analysis,” Construction Management & Economics, Vol. 18, No.1 (2000), pp. 45-54
35.Koh, H. C. and Tan S. S., “A neural network approach to the prediction of going concern status,” Accounting and Business Research, Vol. 29, No. 3 (1999), pp. 211-216.
36.Kuhnert, P. M., Do, K. A. and McClure R., “Combining non-parametric models with logistic regression: an application to motor vehicle injury data,” Computational Statistics and Data Analysis, Vol. 34 (2000), pp. 371-386.
37.Lee, G., Sung, T. K. and Chang, N., “Dynamics of modeling in data mining: interpretive approach to bankruptcy prediction,” Journal of Management Information Systems, Vol. 16, No. 1 (1999), pp. 63-85.
38.Lee, H., Jo, H. and Han, I. “ Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis,” Expert Systems With Applications, Vol. 13, No. 2 (1997), pp. 97-108.
39.Loh, W. and Vanichsetakul, N., “Tree-structured classification via generalized discriminant analysis,” Journal of the American Statistical Association, Vol. 83 (1988), pp. 715-728.
40.Lynn, B. E., “Performance evaluation in the new economy: bringing the measurement and evaluation of intellectual capital into the management planning and control system,” International Journal of Technology Management, Vol. 16, No. 2 (1998), pp. 162-176.
41.Lynn, B. E., “Culture and intellect capital management: a key factor in successful ICM,” International Journal of Technology Management, Vol. 18, No. 5 (1999), pp. 590-603.
42.Malhotra, M. K., Sharma, S. and Nair, S. S. “Decision making using multiple models,” European Journal of Operational Research, Vol. 114, No. 1 (1999), pp. 1-14.
43.Markham, I. S., Mathieu, R. G., and Waray B. A., “A rule induction approach for determining the number of kanbans in a just-in-time production system,” Computers & Industrial Engineering, Vol. 34, No. 4 (1998), pp. 717-727.
44.Masoulas, V., “Organizational requirements definition for intellectual capital management,” International Journal of Technology Management, Vol. 16, No. 2 (1998), pp. 126-143.
45.McGurr, P. T. and DeVaney, S. A., “Predicting business failure of retail firms: an analysis using mixed industry model,” Journal of Business Research, Vol. 43 (1998), pp. 169-176.
46.Morgan, J. N. and Sonquist, J. A., “Problem in the analysis of survey data and a proposal,” Journal of the American Statistical Association, Vol. 58 (1963)
47.Odom, M. D., “A neural network model for bankruptcy prediction,” International Joint Conference Neural Networks, Vol. 2 (1990), pp. 163-168.
48.Ohlson, J. A., “Financial ratios and the probabilistic prediction of bankruptcy,” Journal of Accounting Research, Vol. 18, No. 1 (1980), pp. 109-131.
49.Ohmann, C., Moustakis, V., Yang, Q. and Lang, K., “Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain,” Artificial Intelligence in Medicine, Vol. 8, No. 1 (1996), pp. 23-36.
50.Qnet 97 — Neural Network Modeling for Windows 95/98/NT, Vesta Services: Winnetka (1998).
51.Quinlan, W. F. and Hansen, J. V., “Inducing rules for expert system development,” Management Science, Vol. 34 (1998), pp. 1403-1415
52.Quinlan, J. R., “Induction of decision trees,” Machine Learning, Vol. 1 (1986), pp. 81-106.
53.Ross, J., Ross, G., Dragonetti, N. C., and Edvinsson, L., Intellectual Capital-Navigating the New Business Landscape, New York University Press: New York (1997).
54.Rumelhart, E., Hinton, G. E. and Williams, R. J., Learning internal representations by error propagation in parallel distributed processing, MIT Press: Cambridge, (1985), pp. 318-362.
55.Salchenberger, L. M., Cinar, E. M. and Lash, N. A., “Neural networks: a new tool for predicting thrift failures,” Decision Sciences, Vol. 23, No. 4 (1992), pp. 899-916.
56.Sanchez, M. S. and Sarabia, L. A. “Efficiency of multi-layered feed-forward neural networks on classification in relation to linear discriminant analysis, quadratic discriminant analysis and regularized discriminant analysis,” Chemometrics and Intelligent Laboratory Systems, (1995), pp. 287-303.
57.Sharma, S., Applied Multivariate Techniques, Wiley: New York (1996).
58.Sorensen, E. H., Miller, K. L. and Ooi, C. K., “The decision tree approach to stock selection,” The Journal of Portfolio Management, Vol. 27, No. 1 (2000), pp.42-52.
59.SPSS 1997 — Statistic Modeling for Windows 95/98/NT, SPSS Inc.: New York (1998).
60.Stewart, T. A., “Your company’s most valuable asset: Intellectual Capital,” Fortune, Vol. 130, No. 7 (1994), pp. 68-73.
61.Stewart, T. A., Intellectual Capital: The New Wealth of Organizations, Bantam Doubleday Dell Publishing Group, Inc.: New York, (1997).
62.Sung, T.K., Chang, N., Lee, G. “Dynamics of modeling in data mining; interpretive approach to bankruptcy prediction,” Journal of Management Information Systems, Vol. 16, No. 1 (1999), pp. 63-85.
63.Sveiby, K. E., The New Organizational Wealth-Managing and Measuring Knowledge-Based Assets, Big Apple Tuttle-Mori Agency, Incm Co.: New York (1997).
64.Sveiby, K. E., “Intellectual capital: thinking ahead,” Australian CPA, Vol. 68, No. 5 (1998), pp. 18-22.
65.Tacq, J., Multivariate Analysis Techniques in Social Science Research, SAGE: London (1997).
66.Tam, K. and Kiang, M., “Managerial applications of neural networks: the case of bank,” Management Science, Vol. 38, No. 7 (1992), pp. 926-947.
67.Trevino, L. J., and Daniels, J. D., “FDI theory and foreign direct investment in the United States: a comparison of investors and non-investors,” International Business Review, Vol.4, No. 2 (1995), pp. 177-194.
68.Ulrich, D., “Intellectual capital = competence * commitment,” Sloan Management Review, Vol. 39, No. 2 (1998), pp. 15-26.
69.Vellido, A., Lisboa, P. J. G. and Vaughan, J., “Neural networks in business: a survey of applications (1992-1998),” Expert Systems With Applications, Vol. 17 (1999), pp. 51-70.
70.Zhang, G., Patuwo, B. E. and Hu, M. Y., “Forecasting with artificial neural networks: the state of the art,” International Journal of Forecasting, Vol. 14, No. 1 (1998), pp. 35-62.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊