(3.237.178.91) 您好!臺灣時間:2021/03/07 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建銘
研究生(外文):Chen Chien Ming
論文名稱:類神經網路於WebMining之應用
論文名稱(外文):Application of Web Mining Using Artificial Neural Network
指導教授:陳銘崑陳銘崑引用關係
指導教授(外文):Ming-Kuen Chen
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:商業自動化與管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:108
中文關鍵詞:網際探勘資料挖掘關聯規則霍普菲爾類神經網路
外文關鍵詞:Web MiningData MiningAssociation RuleHopfield Neural Network
相關次數:
  • 被引用被引用:31
  • 點閱點閱:508
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:6
由於電子商務的發展,以往傳統的交易平台也由電話、傳真、書面資料,進展到網際網路。在後端交易資料庫中資料中,隱藏了不易發現的知識或訊息;而這些資料中所隱藏的趨勢或模式,可協助商業的應用上。資料的挖掘在商業市場的應用上有其重要性,其中挖掘的技術更是重要,只要善用其結果將有助於企業取得競爭上的優勢。關聯規則係在網際探勘中的資料挖掘的技術之一,其主要是找出資料庫某些資料項目間彼此的關聯性。由於關聯法則的表現是相當明確,而且易懂,因此被大量廣泛的運用在各種不同的領域上。關聯法則不只找出物件的因果關係,其結果更可做為預測之依據。
本研究旨在以霍普菲爾類神經網路(Hopfield Neural Network)解決關聯規則挖掘找出高頻項目演算法的問題。本文以台北科技大學圖書館學生圖書借閱紀錄為研究對象。藉此可使圖書館員找出本校學生借閱書籍的偏好與借閱情況,並可為學生在將來添購他們喜歡閱讀種類的書籍,滿足學生需求,同時可使整體圖書館借閱率提高,也可提供圖書館作為其他決策之參考。依本研究結果顯示:應用科學類與社會科學類的書籍具有高度的關聯規則存在。
The new Transaction Platform, Internet, has replaced telephone, fax and paper works because of the development of Electronic Commerce. Whether the message or any undiscovered knowledge is hided in the transaction database or not, the trends or model hided in data can provide application in business. The Data Mining is very useful in business market, as for the technique of Data Mining is more important. As long as people could make a good use of the technique, the technique would help to create a better situation. Association Rule is very important for the technique of Data Mining on web. People could use Association Rule to find the relatinship between some itemsets in databases. The theory of Association Rules is easy and understandable; therefore, it is used extensively in many fields. People could not only use Association Rule to find out the relationship between cause and effect, but also use it to do some forecasts.
The substance of the study is to find out how Associatin Rule solves the frequency itemset problem by using Hopfield Neural Network. In this study, student loan registration records from National Taipei University of Technology library are the main reference. The library staff could find out student’s preference and the rates of books loan registration records. Then, the library staff can purchase new books to satisfy students’ needs; furthermore, the result of Association Rule could help to improve the rates of loan books. Moreover, the analysis results may become useful reference for liberary staff. In the study, the result shows that there are strict rules between the books of applied science and society science.
摘要iii
Abstractiv
誌謝v
目次vi
表目錄viii
圖目錄ix
第一章 緒論1
1.1 研究動機1
1.2 研究目的2
1.3 研究流程3
第二章 文獻探討5
2.1 網際探勘5
2.2 網際探勘技術9
2.3 關聯法則13
2.4 類神經網路與資料挖掘38
第三章 ARM霍普菲爾-坦克網路模式46
3.1 平行挖掘關聯規則46
3.2 霍普菲爾-坦克類神經網路47
3.3 ARM霍普菲爾-坦克類神經網路模式55
第四章 實驗結果與分析60
4.1 圖書館資料庫結構情境60
4.2 資料轉換61
4.3 關聯規則評估項目65
4.4 參數最佳化66
4.5 實驗結果比較與分析79
第五章 結論與建議93
5.1 結論93
5.2 未來研究建議94
參考文獻95
[1] NetCraft, http://www.netcraft.com/survey.
[2] 曾義光,「網站經營利器:掌握潛在顧客 以網際探勘(Web Mining)幫助決策判斷」,網際先鋒,70,PP.32-36,2000/03。
[3] 程左一,台大資訊管理研究所,資訊管理研究所網站,http://adamchan.ceo.com.tw/。
[4] Cooley, R., Mobasher, B. and Srivastava, J., 「Web Mining:Information and Pattern Discovery on the World Wide Web」,Technical Report TR 97-027,University of Minnesota, Dept. of Computer Science , Minneapolis, 1997.
[5] 李明德,「網路廣告輪播系統之開發」,國立中央大學大學機械工程研究所碩士論文,2000年6月。
[6] Xuemin Lin; Xiaomei Zhou; Yuh-Chi Lin, Efficiently Mining Tree Traversal Patterns in a Web Environment. TENCON 98. 1998 IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control Volume: 1, 1998, pp.115—117.
[7] Yi, J. and Sundaresan, N., 「Mining the Web for Acronyms Using the Duality of Patterns and Relations」,Proceedings of the Second International Workshop on Web Information and Data Management, pp.48-52, 1999.
[8] Chung-Hong Lee and Hsin-Chang Yang, A Web text mining approach based on self-organizing map. Proceedings of the second international workshop on on Web information and data management, 1999, pp.59—62.
[9] Han, J. “Data mining,” in J. Urban and P. Dasgupta(eds.), Encyclopedia of Distributed Computing, Kluwer Academic Publishers, 1999.
[10] Karen Watterson, “A Data Miner’s Tools,” Byte, pp. 91-96.
[11] Frawley, W. J., Paitetsjy-Shapiro, G. and Matheus, C.J., “Knowledge Discovery in Databases: An Overview,” Knowledge Discovery in Databasee, California, edited by G.Piatetsky-Shapiro and W.J. Frawley, AAAI/MIT Press, 1991. pp. 1-30.
[12] Grupe, F. H. and Owrang,M. M., “Data Base Mining Discovering New Knowledge and Coperative Advantage,” Information Systems Management, Vol.12, No. 4. Fall, 1995, pp.35-41.
[13] Berry, A. J. Michael and Linoff, Gordon, Data Mining Techniques for Marketing, Sales, and Customer Support, John Wiley & Sons, Inc., 1997.
[14] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., “From Data Mining to Knowledge Discovery: A overview”, In advances in Knowledge Discovery and Data Mininig, pp.471-493, 1996.
[15] 林幸怡,「擴充先前知識以輔助資料挖掘」,國立政治大學資訊管理研究所碩士論文,1997年。
[16] 樓玉玲,「以資料挖掘技術分析政大通識課程」,國立政治大學資訊管理研究所碩士論文,1998。
[17] Pieter, Adriaans and Dolf, Zantinge, Data Mining, Addison Wesley, 1996.
[18] Avelino Gonzalez and Douglas Dankel, The Engineering of Knowledge-Based System. Englewood Cliffs, New Jersey: Prentice Hall, 1993.
[19] J.S. Park, M.S. Chen, and P.S. Yu.,”An Effective Hash Based Algorithm for Mining Association Rules”, Proc. ACM SIGMOD, pp.175-186, 1995.
[20] R. Agrawal and R. Srikant, “Fast Algorithm for Mining Association Rules in Large Databases”, In Proc. 1994 int’l Conf. VLDB, pp.487-499, Santiago, Chile, Sep. 1994.
[21] J.S. Park, M.S. Chen, and P.S. Yu, “An Effective Hash Bash Based Algorithm for Mining Association Rules,” Proc. ACM SIGMOD, pp. 175-186, 1995.
[22] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm for Mining Association Rules in Large Databases”, Proc. 21th VLDB, pp.432-444, 1995.
[23] H. Toivonen, “Sampling Large Databases for Association Rules,” VLDB, pp.134-145, 1996.
[24] Show-Jane Yen and Arbee L.P. Chen, “An Efficient Approach to Discovering Knowledge from Large Database”, IEEE Trans/ On Knowledge and Data Eng.”, Vol. 8., No.5, PP.8-18, Sept./Oct. 1996.
[25] R. Agrawal, Shafer, C. John. , ”Parallel Mining of Association Rules”, Knowledge and Data Engineering, IEEE Transactions on , Vol. 8, No.6, PP.962 -969, Dec. 1996.
[26] S. Brin, R. Motwani, and C. Silverstein, “Beyond Market Baskets:Generalizing Association Rules to Correlations”, 1997 ACM SIGMOD Conference on Management of Data, pp.265-276, 1997.
[27] B. Dunkel and N. Soparkar, “Data Organization and Access for Efficient Data Mining,” Sydney, Australia, ICDE 1999.
[28] D. Lin and Z.M. Kedem, “Pincer-Search:A New Algorithm for Discovering The Maximum Frequent Set,” In Proc. VI Intl. Conf. On Extending Database Technology, 1998.
[29] R.J. Bayardo Jr., ”Efficiently Mining Long Patterns from Databases,” Proc. of the ACM SIGMOD Conference on Management of Data, pp.85-93, Seattle, Washington, June, 1998.
[30] R. Agrawal and R. Srikant, “Fast Algorithm for Mining Association Rules in Large Databases”, In Proc. 1994 int’l Conf. VLDB, pp.487-499, Santiago, Chile, Sep. 1994.
[31] Jiawei Han and Yongjian Fu, “Discovery of Multiple-Level Association Rules from Large Databases,” Proc. of the 21st VLDB Conference Zurich, Swizerland, 1995.
[32] R. Srikant and R. Agrawal, “Mining Quantitative Association Rules in Large Relational Tables,” SIGMOD 1996, pp.1-12.
[33] 葉怡成,類神經網路模式應用與實作,台北市,儒林,1999年。
[34] Aleksander, I., Morton, H.B. and Myers, C.E., “HCI: a cognitive neural net prospects”, Neural Nets in Human-Computer Intern., IEEE colloquium Published, pp.1-4, 1990.
[35] Nilson, McCord Marilyn and Illingworth, T.W., Apractical Guide to Neural Nets, Reading Addison Wesley Publishing Co., 1991.
[36] 胡玉城,「暢談類神經網路」,倚天資訊股份有限公司出版,1992。
[37] 傅心家,「神經網路導論」,第三波資訊發行,1993。
[38] McClean, Sally and Scotney Bryan, “A structured Approach To Knowledge Discovery Database”, 1996.
[39] 林常平,「再談類神經網路」,自動化科技,138,pp.50-59,1995。
[40] 游崇智,「應用類神經網路模擬多變量計量模式於台灣股市之分析與預測」,私立中原大學企管研究所碩士論文,1996。
[41] 林建廷,「類神經網路在無線通訊市場消費區隔與預測之應用研究」,私立元智大學管理研究所碩士論文,2000。
[42] Mohamed L. Hambaba, Intelligent Hybrid System for Data Mining, Computational Intelligence for Financial Engineering, 1996, Proceedings of the IEEE/IAFE 1996 Conference on, 1996.
[43] B. L. Chua, M. Khalid and R. Yusof, “Intelligent Database by Network and Data Mining,” Proc. Of the First National Conference on Artifical Intelligence Applications in Industry, Kuala Lumpur, Malaysia, 20-21 Oct, 1999.
[44] Chua Boon Lay, Marzuki Khalid and Rubiyah Yusof, An Enhanced Intelligent Database Engine by Neural Network and Data Mining, TENCON 2000. Proc. Vol.2 , 2000 ,pp.518-523.
[45] Eduardo R. Hruschka and Nelson F. F. Ebecken, Applying a Clustering Genetic Algorithm for Extracting Rules from a Supervised Neural Network, Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on, Vol.3, 2000, pp.407-412.
[46] Nicholas DeClaris, Doron Shalvi and Tung-Duong Tran-Luu, “Computational intelligence-based methodologies for population studies and laboratory medicine decision aids,” Proc. Of the Int’l Neural Network Society 1996 World Congress on Neural networks, San Diego, CA, Sept. 1996.
[47] J. S. Maritz and T. Lwin, Empirical Bayes method. London: Chapman and Hall, 1989.
[48] Aram Thomasian, The structure of probability theory with applications. New York: McGraw-Hill, 1969.
[49] Doron Shalvi and Nicholas DeClaris, An Unsupervised Neural Network Approach to Medical Data Mining Techniques, Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on, Vol.1, 1998, pp.171-176.
[50] N. Laskaris, S. Foropoulos, ”An Efficient Data Mining technique with applications in Multivariate Image Analysis”, Digital Signal Processing Proceedings, 1997. DSP 97, 1997 13th International Conference on, Vol:2, 1997, pp.1103-1106.
[51] M-J, Zaki. Parallel and distributed association mining: a survey. IEEE on Concurrency, 1999.
[52] H. Lu, R. Setiono and H. Liu.,”Effective data mining using Neural Networks,” IEEE Transactions on knowledge and data engineering, vol. 8, no. 6, December 1996.
[53] Z. Yuanhui, L. Yuchang, S. Chunyi, ”Combining neural network, genetic algorithm and symbolic learning approach to discover knowledge from databases,” 1997 IEEE Int. Conf. on cybernetics and simulation, vol.5, pp.4388-4393, 1997.
[54] J. Gaber, T. El-Ghazawi and O. Frieder, “Task mapping with biological computing. In Biocomputing: New solutions to Parallel and Distributed Computing Problem,” J. Wiley. In Press, 2000.
[55] Hopfield J., Tank, D., "Neural computations of decisions in optimization problems," Biological Cybernetics, 51, pp.141-152.
[56] Laskaris, N.; Fotopoulos, S., “An efficient data mining technique with applications in multivariate image analysis,” Digital Signal Processing Proceedings, 1997. DSP 97, 1997 13th International Conference on, Vol:2, 1997, pp.1103—1106.
[57] Sasaki, H.; Watanabe, M.; Kubokawa, J.; Yorino, N.; Yokoyama, R., “A solution method of unit commitment by artificial neural networks,” Power Systems, IEEE Transactions on, Vol:7 ,Issue:3, Aug. 1992, pp.974—981.
[58] Macii, E.; Poncino, M., “Estimating power consumption of CMOS circuits modelled as symbolic neural networks,” Computers and Digital Techniques, IEE Proceedings, Vol:143, Issue:5, Sept, 1996, pp:331—336.
[59] 陳和琴、吳琉璃、江琇英編著,「圖書分類編目」。國立空中大學,1996,pp.99。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔