跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊蘭清
論文名稱:空調機蒸發器盤管水氣凍結之省能研究
論文名稱(外文):An Energy Saving Study of Air-Conditioners with Ice-Packed Evaporators
指導教授:柯 明 村
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:冷凍與低溫科技研究所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:95
中文關鍵詞:回吐水氣盤管凍結
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般窗型或分離式空調機在運轉時,當感應回風溫度達到預設值時,壓縮機即停機,此時在蒸發器盤管上之水氣將因系統高低壓平衡,表面溫度回升而蒸發,經送風機再度被帶回室內,使得空調室內相對溼度回升,增加了室內空氣潛熱負荷,這將使壓縮機再度啟動時,必須帶走回吐水氣而增加負載,同時造成人員不舒適感的提升而再次調低設定溫度。這種傳統空調機的缺點使得空調室內舒適條件不易控制,且因壓縮機無謂的耗電而造成夏季時電力的尖峰負載。
因此,本論文為改進此缺點,利用儲冰運轉控制,將造成室內潛熱增加及悶熱不舒適感的回吐水氣在蒸發器冷卻管盤上予以凍結,減少壓縮機停機時水氣回吐到室內的總量,可降低壓縮機再運轉空調所必須耗費的電力,這可使傳統空調機不論在空調舒適感上,以及空調耗能方面獲得大幅的改進。本研究以實驗的方法探討上述盤管凍結的可行性,探討的重點是盤管凍結量的控制、儲冰能力探討、空調室內狀態改進程度、以及節省用電量的能力。本實驗之數據與文獻上理論模式之結果比對時,在趨勢上有很好的相符性。實驗結果顯示,若在傳統運轉模式及盤管凍結運轉模式操作時,壓縮機ON-OFF時距控制為相同,則盤管凍結運轉模式之耗電功率節省量不大,最佳時約在6%左右。若盤管凍結模式之壓縮機運轉乃依照ASHRAE舒適區定義條件而控制,則其耗電功率可比傳統運轉模式節省量較大,最佳時約可達12%左右,平均約可達10%。而壓縮機每小時啟停之週期在允許達到近穩態之前提下,對空調省能幫助不大。本研究已充分掌握利用蒸發器冷卻管排水氣控制之暫態反應現象和應用技術,若本技術可成功開發商業應用,則預期可為民生空調機之總耗電量節省約10%左右之電量,對抑低台電公司之尖峰用電將有明顯的貢獻。

Traditional window-type or split-type air conditioners have several defects such as latent heat re-gain due to the condensed water on the evaporator is sent back to the room and the compressor is not energy-efficient with this reason, etc. These major shortages result in the difficulty in controlling comforts in the conditioned space as well as consuming much more peak electricity load. From the energy point of view, these must be improved to save more unnecessary wasted-electricity.
An original idea which using ice-packing evaporator to avoid the defects mentioned above is proposed in this thesis. This brand new concept is to have the condensed water on the evaporator frozen through careful operation of compressor and fan. This will in turn prevent the condensed water from being carried back to conditioned space and keep on providing cold air by melting the ice on the fin arrays of evaporator. It is evident that the compressor can be re-start with lower load for there is no latent heat regain due to ice packing on the evaporator. Therefore the electricity consumption of household air conditioners will be cut down and the comforts of conditioned room will be improved for the relative humidity is well controlled.
This thesis will survey the feasibility of this innovate idea. Window-type and split-type household air conditioners will be re-arranged to service as ice packing experiments. Thorough inspections will be performed to establish this technology. A theoretical model will also be established to analyze this ice packing phenomena. Finally the energy-saving ability of this kind air conditioners will be examined.
If this innovate idea can be proved technically useful through our research, the peak demand of 40% caused by air-conditioning at the peak time will be cut down remarkably and the electricity-shortage of Taipower will be relieved naturally. The present research will be a great contribution to our country and economic growth.

摘 要 i
Abstract ii
誌 謝 iii
目 次 iv
圖目錄 vi
表目錄 viii
第一章 緒 論 1
1.1 窗型機的年產量 2
1.1.1 台灣地區 2
1.1.2 其他地區 2
1.2 窗型機的使用情形 6
第二章 研究背景及目的 9
2.1 研究背景 9
2.2 研究目的 14
2.3 研究之重要性 14
第三章 研究方法及進行步驟 16
3.1 實驗儀器與配置 17
3.1.1 窗型空調機 17
3.1.2 溫度與溼度量測儀器 18
3.1.3 變頻器 19
3.2 實驗進行程序與步驟 19
3.2.1 蒸發器冷卻管排性能量測與傳統模式運轉測試 19
3.2.2 依室內設定溫度之盤管凍結與傳統運轉測試 20
3.2.3 依ASHRAE舒適區定義設定之盤管凍結與傳統運轉測試 21
3.2.4 不同啟動週期N之運轉測試 22
第四章 實驗數據分析 24
4.1 由乾球溫度Tdb和相對濕度φ換算濕度比ω和熱焓值 24
4.2 風量量測 25
4.3 部份負載(盤管凍結)時暫態效應分析 25
第五章 結果與討論 27
5.1 蒸發盤管凍結可行性及控制方式 27
5.2 盤管凍結運轉與傳統運轉比較 28
5.3 盤管凍結運轉依室內舒適控制儲冰運轉之比較 32
5.4 壓縮機啟動週期N之影響 33
5.5 顯熱與潛熱比暫態變化 34
第六章 結論與展望 38
6.1 結論 38
6.2 研究展望 39
參考文獻 41

1.台灣電力公司,電力綜合研究所資料,1998。
2.台灣電力公司,「台灣地區冷氣用電之研究」,台灣電力公司研究報告,1995。
3.經濟部統計處,「工業生產統計月報」,pp.145-146,2001。
4.McQuiston, F. C., “Correlations for heat, mass and momentum transport coefficients for plate-fin-tube heat transfer surfaces with staggered tubes”. ASHRAE Transactions, 1, pp.294-309, 1978.
5.cQuiston, F. C., “Heat, mass and momentum transfer data for five plate-fin-tube heat transfer surfaces”. ASHRAE Transactions, 1, pp.266-293, 1978.
6.Gray, D. L. and Webb, R. L., “Heat transfer and friction correlations for plate-finned-tube heat exchangers having plain fins”. In Proceedings of the eighth International heat transfer conference, Vol. 6, San Francisco, pp. 2745-2750, 1986.
7.Ramachandran, P. V., “Simulation and optimization of cooling coils”. Ph. D. thesis, Mechanical Engineering Department, IIT Delhi, 1984.
8.Mirth, D. R. and Ramadhyani, S., “Prediction of cooling coil performance under condensing conditions”. Int. J. Heat and Fluid Flow, 14(4), pp.391-399, 1993.
9.Abhay Vardhan and P. L. Dhar, “A new procedure for performance prediction of and conditioning coils”. International Journal Refrigeration, Vol. 21. No.1, pp. 77-83.
10.Khattar, M.L., Ramanan, and M. “Swami, Fan cycling effects on air conditioner moisture removal performance in warm, humid climates”. Presented at the International Symposium on Moisture and Humidity, Washington, D.C., April, 1985.
11.Parlen, W.H., R.W. Beausoliel, and G.E. Kelly, “Factors affecting the performance of a residential air-to-air heat pump”, ASHRAE Transactions 83(1): pp.839-849, 1997.
12.Henderson, H.I., “Simulating combined thermostat, air conditioner, and building performance in a house”. ASHRAE Transactions 98(1), 1992.
13.Hugh I. Henderson, Jr., P.E. and Kannan Rengarajan, P.E., “A model to predict the latent capacity of air conditioners and heat pumps at part-load conditions with constant fan operation”, ASHRAE Transactions, 102, 1, pp.266-274, 1996.
14.ASHRAE Handbook, Fundamentals, 1997.
15.ASHRAE Handbook, System and Equipment, 1992.
16.ASHRAE Handbook, Refrigeration, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top