跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 09:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡如
研究生(外文):CHEN I JU
論文名稱:有限邊界之孔穴擴張理論推導
論文名稱(外文):Cavity expansion theory in finite boundary
指導教授:吳朝賢
指導教授(外文):Cho-Sen Wu
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:208
中文關鍵詞:孔穴擴張非對應塑性流動法則有限邊界非黏性材料
外文關鍵詞:Cavity expansionNon-associated flow ruleFinite boundaryGeneral soil
相關次數:
  • 被引用被引用:3
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本文基於圓柱形孔穴擴張理論,探討孔穴外圍土壤之徑向應力及應變關係,對有限邊界孔穴外圍土壤之徑向應力-變形關係進行推導。
文章以孔穴擴張理論分別針對黏土及非黏性材料進行分析,並假設孔穴外圍土壤之應力-應變關係為線彈性-純塑性。黏性土壤於塑性狀態遵守Tresca降伏準則,當土壤形成塑性環時,變形前後體積保持不變;而非黏性材料則符合莫爾-庫倫降伏準則,孔穴未擴張時土壤處在等應力狀態,且在彈性區可採用小應變理論來分析;另外將土壤膨脹角引入塑性環的大應變中,並利用無窮級數的迭代運算,求得膨脹性土壤之大應變孔穴擴張關係;當土壤形成塑性環時,則利用非對應塑性流動法則導出應力與變形之關係。
研究結果顯示:(1)初始孔穴半徑大小不影響孔穴擴張行為,即孔穴邊界比固定,土壤參數固定,其徑向應力-應變關係的結果皆相等,因此本研究適用於任何尺寸大小之孔穴。(2)土壤參數固定,樁與樁之間距較小者,孔穴半徑達一定之膨脹比時,其所對應之徑向應力比愈大。樁距達一定的孔穴半徑倍數時,徑向應力-應變關係與無限邊界結果相同。(3)初始徑向應力、土壤剪力模數、膨脹角及摩擦角愈大,孔穴半徑達一定之膨脹比所需之徑向應力也愈大,隨著孔穴擴張膨脹比增加則徑向應力比增量也愈大。

A theoretical analysis, based on cylindrical cavity expansion theory, is developed for pressure-expansion relationship around cavity in soils. Expansion behavior of a cavity in finite boundary condition is the distinctive features of this study. The analytical process can be applied to the interpretation of the cone penetration test and the load-settlement estimation of granular column.
In the paper, analytical solution is presented for the expansion cavities of both clay and sand in elastic-perfectly plastic soils. Tresca yield criterion is adopted for clay so that the volume remains unchanged as the soil becomes plastic. Mohr-Coulomb yield criterion with a non-associated flow rule is used to represent plastic behavior of the sand. For the case of cylindrical cavity expansion, the axial or vertical stress is assumed to be the intermediate stress and plane strain conditions in the axial direction are assumed.
Load-strain investigations are demonstrated in the first phase of the study. Parametric studies over the influence factor of Young’s modulus, Poisson’s ratio, the initial in situ stress, cavity radius, angle of friction and angle of dilation are introduced as the second part of the study. Finally, the analytical limit pressure can then be obtained.

目錄..................................................I
表目錄................................................IV
圖目錄................................................V
符號說明...........................................XIII
第一章 緒論...........................................1
1-1 前言..........................................1
1-2 研究動機與目的.................................1
1-3 研究方法......................................2
1-4 研究內容......................................2
第二章 文獻回顧.......................................3
2-1 土壤在彈性範圍內之圓柱形孔穴擴張理論.........3
2-2 大地工程上黏土材料之孔穴擴張理論.............4
2-3 大地工程上非黏土材料之孔穴擴張理論............8
2-4 砂土中圓錐貫入試驗...........................21
2-5 孔穴擴張理論之應用...........................21
2-6 砂樁.........................................22
第三章 理論分析模式之建立.............................25
3-1土壤在彈性範圍內之孔穴擴張行為................25
3-1-1 孔穴外為無限邊界土壤應力在彈性範圍之
孔穴擴張行為...............................28
3-1-2 孔穴外為有限邊界土壤應力在彈性範圍之
孔穴擴張行為................................30
3-2 黏性土壤於塑性範圍內之孔穴擴張行為...........33
3-2-1 無限邊界於塑性範圍內之孔穴擴張行為.........33
3-2-2 有限邊界於塑性範圍內之孔穴擴張行為.........39
3-3 非黏性土壤應力達塑性時之孔穴擴張行為.........48
3-3-1 孔穴外為無限邊界之孔穴邊界恰達塑性時
之擴張行為.................................49
3-3-2 孔穴外為有限邊界之孔穴邊界恰達塑性時
之擴張行為.................................50
3-4 非黏性土壤形成塑性環後之孔穴擴張行為.........50
3-4-1 孔穴外為無限邊界之土壤形成塑性環時
孔穴擴張行為...............................51
3-4-2 孔穴外為有限邊界之土壤形成塑性環時
孔穴擴張行為...........................62
第四章 理論分析結果與討論.............................75
4-1 黏性土壤....................................75
4-1-1 有限邊界之徑向應力-應變關係................76
4-1-2 孔穴初始半徑對徑向應力-應變關係之影響......78
4-1-3樁間距對外圍土壤之徑向應力與應變關係的影響..78
4-1-4初始現地應力對孔穴擴張行為之影響............95
4-1-5 土壤剪力模數對孔穴擴張行為之影響...........100
4-2 非黏性土壤...................................106
4-2-1 非黏性土壤之有限邊界徑向應力-應變關係......106
4-2-2 孔穴初始半徑對徑向應力-應變關係之影響......109
4-2-3 樁間距對外圍土壤之徑向應力-應變關係的影響..109
4-2-4 初始現地應力對孔穴擴張行為之影響...........126
4-2-5 土壤剪力模數對孔穴擴張行為之影響...........130
4-2-6 土壤的膨脹角對孔穴擴張行為之影響...........135
4-2-7 土壤的摩擦角對孔穴擴張行為之影響...........140
4-3 極限應力.....................................145
4-3-1 摩擦角對極限應力之影響.....................145
4-3-2 膨脹角對極限應力之影響.....................148
4-3-3 柏松比對極限應力之影響.....................148
4-3-4 土壤剪力模數對極限應力之影響................150
第五章 結論與建議.....................................157
5-1 結論.........................................157
5-2 建議..........................................159
參考文獻..............................................161
附錄 A............................................169
附錄 B..........................................171
附錄 C...........................................178
附錄 D...........................................182

許懷後, 黃安斌, (1995), ”砂土中圓錐貫入試驗之理論基礎”, 第六屆
大地工程學術研究討論會, 民國84年8月, pp. 375-384.
沈欽裕, (1996), 地工合成物加勁砂石樁載重-沉陷關係初探, 淡江大學
碩士論文
林賢欽, (1998), 地工合成物加勁砂石樁載重-沉陷關係, 淡江大學碩士
論文
Baguelin, F., Jezequel, J. F. , Le Mee, E., and Le Mehaute, A.
(1972), “Expansion of Cylindrical Probes in Cohesive
Soils,” ASCE, Vol. 98, No. SM11, pp. 1129-1142.
Baligh, M. (1976), “Cavity expansion in sands with curved
envelopes,” Journal of the Geotechnical Engineering
Divison, Vol.102, No. 11, pp1131-1146.
Bigoni, D., and Laudiero, F. (1989), “Quasi-static finite
cavity expansion in a non-standard elastic-plastic
Medium,” International Journal of Mechanical Sciences,
Vol. 31, No. 11-12, pp.825-837.
Brauns, J. (1978), “Initial Bearing Capacity of Stone Columns
and Sand Piles,” Symposium on Soil Reinforcing and
Stabilizing Techniques, Sydney, Australia, pp. 477-496.
Carter, J. P. , Booker, J. R., and Yeung, S. K. (1986),
“Cavity Expansion in Cohesive Frictional Soils,”
Geotechnique, Vol. 36, No. 3, pp.349-358.
Carter, J. P. ; Randolph, M.F., and Wroth,C. P. (1979),
“Stress and pore pressure changes in clay during and after
the expansion of a cylindrical cavity,” International
Journal for Numerical and Analytical Methods in
Geomechanics, Vol. 3, Nol. 4, pp 305-322.
Chadwick, P. (1959), “The Quasi-static Expansion of A
Spherical Cavity in Metals and Ideal Soils,” The
Quarterly Journal Mechanics and Applied Mathematics, Vol.
12, Part 1, pp. 52-71.
Chadwick, P. (1962), “Propagation of Spherical Plastic-elastic
Disturbances from An Expanded Cavity,” The Quarterly
Journal Mechanics and Applied Mathematics, Vol. 15, Part
3, pp. 349-376.
Collins, I. F., Pender, M. J., and Yan, W. (1992), “Cavity
Expansion in Sands under Drained Loading Conditions,”
International Journal for Numerical and Analytical
Methods in Geomechanics, Vol. 16, pp. 3-23.
Collins, I. F., and Stimpson ,J.R. (1994), “Similarity
solution for drained and undrained cavity expansions in
soils,” Geotechnique, Vol. 44, No.1, pp21-34.
Collins, I. F., and Yu, H.S. (1996), “Undrained cavity
expansions in critical state soils.” International
Journal for Numerical and Analytical Methods in
Geomechanics,” Vol. 20, No.7, pp489-516.
De Sousa Coutinho, F. (1990), “Radial expansion of
cylindrical in sandy solid. Application to
pressurementer tests,” Canadian Geotechnical Journal,
Vol 27, No.6, pp737-748.
Durban, D., and Papanastasiou, P. (1997), “Cylindrical cavity
expansion and contraction in pressure sensitive
geometrical,” Acta Mechanical, Vol.122, No.1-4, pp99-
122.
Felsen,, and Vecchi,. (1991), “Wave scattering from slit
coupled cylindrical cavities with interior loading :
Resonant mode expansion,” IEEE Transactions on Antennas
and Propagation, Vol. 39, No. 8, pp1085-1097.
Forrestal, M.J., and Tzou, D.Y. (1997), “Spherical cavity-
expansion penetration model for concrete targets.”
International Journal of Solids and Structures, Vol. 34,
No. 31-32, pp4127-4146.
Forrestal, M.J., and Luk, V. K . (1988), “Dynamic spherical
cavity-expansion in compressible elastic-plastic solid,”
Journal of Applied Mechanics, Transactions ASME Vol. 55,
No. 2, pp275-279.
Gibson, R. E., and Anderson, M. A. (1961), ”In-situ
Measurement of Soil Properties with the Pressure meter,”
Civil Engineering and Public Works Review, Vol. 56, No.
685, pp. 615-618.
Houlsby, G. T., and Withers, N. J. (1988), “Analysis of the
Cone Pressure meter Test in Clay,” Geotechnique, Vol. 38,
No. 4, pp. 575-587.
Hughes, J. M. O. , Wroth, C. P., and Windle, D. (1977),
“Pressure meter Test in Sands,” Geotechnique, Vol. 27,
No. 4, pp. 455-477.
Hill, J.M., and Cox, G.M. (2000), ”Cylindrical cavities and
classical rat-hole theory occurring in bulk materials,”
International Journal for Numerical and Analytical
Methods in Geomechanics, pp 971-990.
Kim, J., and Soedel, W. (1989), “General formulation of four
pole parameter for three-dimensional cavities utilizing
model expansion, with special attention to the annular
cylinder,” Journal of Sound and Vibration, Vol. 129,
Nol. 2, pp 237-254.
Kim, J., and Soedel, W. (1990), “Development of a general
procedure to formulate four pole parameters by model
expansion and its application to three-dimensional
cavities,” Journal of Vibration, Acoustics, Stress, and
Reliability in Design, Vol. 112, No. 4, pp. 452-459.
Ladanyi, B. (1963), “Expansion of A Cavity in A Saturated Clay
Medium,” ASCE, Vol. 89, No. SM 4, pp. 127-161.
Ladanyi, B. (1972), “In situ Determination of Undrained Stress-
Strain Behavior of Sensitive Clays with the
Pressure meter,” Canada Geotechnical Journal, Vol. 9, pp.
313-319.
Ladanyi, and Foriero. (1998), “Numerical solution of cavity
expansion problem in sand based directly on experimental
stress-strain curves,” Canadian Geotechnical
Journal ,Vol. 35,pp541-557.
Mabsout, E, ; Sadek, M, ; and Smayra, E. (1999) “Pile driving
by numerical cavity expansion,” International Journal
for Numerical and Analytical Methods in Geomechanics ,
pp1121-1140.
Macek, W., and Duffey, A . (2000), “Finite cavity expansion
method for near-surface effects and layering during Earth
penetration, ” International Journal of Impact
Engineering .pp239-258.
Manassero, M. (1989), “Stress-Strain Relationships from Drain
Self-boring Pressure meter Test in Sands,” Geotechnique,
Vol. 39. No. 2, pp. 293-307.
Palmer, A. C. (1972), “Undrained Plane-Strain Expansion of A
Cylindrical Cavity in Clay: A Simple Interpretation of
the Pressure meter Test,” Geotechnique, Vol. 22, No. 3,
pp. 451-457.
Petrov, A. G. (1986), “Asymptotic expansions of thin
axisymmetric cavities,” Journal of Applied Mechanics and
Technical Physics (English translation of PMTF, Zhurnal
Prikladno), Vol. 27, Nol. 5, pp667-672.
Rosenberg, Z. (1987), “Accounting for the spell strength of
ductile metals by spherical cavity expansion
analysis,” Materials Science and Engineering, Vol. 93,
pp l17-l20.
Salencon, J. (1966), “Expansion Quasi-Statique D’une Cavity a
Symmetries Spherique ou Cylindique Dans un Milieu
Elastoplastique,” Annales de Ponts et Chausses, Vol. 3,
pp. 175.
Salgado, R., Mitchell, J.K., and Jamiolkowski, M. (1997),
“Cavity expansion and penetration resistance in sand,
“ Journal of Geotechnical and Geoenvironmental
Engineering, Vol. 123, pp344-354.
Sayed, S. M., and Hamed, M. A. (1987), “Expansion of cavities
in layered elastic system,” International Journal for
Numerical and Analytical Methods in Geomechanics, Vol.
11, Nol. 2, pp 203-313.
Selvadurai, A. P. S. (1982), “Influence of finite strains on
the expansion of a cylindrical cavity in a compressible
or dilatants soil,” Deformation and Failure of Granular
Materials, pp 635-642.
Silvestri, V. ; Dakroub, H., and Fahmy, Y. (1997), “Analysis
of cone penetration and indentation tests in clayey
soils,” Canadian Geotechnical Journal , Vol. 34, No.
2, pp254-263.
Vesic, A. S. (1972), “Expansion of Cavity in Infinite Soil
Mass,” ASCE, Vol. 98, No. SM3, pp.265-290.
Wroth, C. P., and Windle, D. (1975), “Analysis of the
Pressure meter Test Allowing for Volume Change,”
Geotechnique, Vol. 25, pp. 598-604.
Warren, T.L. (1999), “The Effect of Strain Rate on Dynamic
Expansion of Cylindrical Cavities,” Journal of Applied
Mechanics, Transaction ASME, Vol.66, pp818-821.
Yu, H. S., and Houlsby, G. T. (1991), “Finite Cavity Expansion
in Dilatants Soils: Loading Analysis,” Geotechnique,
Vol. 41, No. 2, pp. 173-183.
Yu, H. S., and Houlsby, G. T. (1995), “Large strain analytical
solution for cavity contraction in dilatant soils,”
International Journal for Numerical and Analytical
Methods in Geomechanics, pp 793-811.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top