跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊文儀
研究生(外文):Yang Wen Yi
論文名稱:伴有迴流之逆流式套管加熱器之研究
論文名稱(外文):An Analytical Study of Laminar Counterflow Concentric-Tube Heaters with External Refluxes
指導教授:何啟東
指導教授(外文):Ho Chii Dong
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:179
中文關鍵詞:正交展開法迴流效應共軛格拉茲問題
外文關鍵詞:orthogonal expansion techniquerefluxesconjugated Graetz problem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
本研究是設計圓形管加裝一可忽略熱阻之隔板,使之成為一組固定外壁溫度具有迴流裝置之圓柱同心套管熱交換器,此系統所推導出的數學模型是屬於共軛格拉茲問題(conjugated Graetz problem),以分離變數法並利用正交展開方法(orthogonal expansion technique),探討迴流效應對雙套管間的熱傳效率之影響,其結果與單行程無隔板系統作比較。結果顯示,預混效應及滯留時間效應是影響熱傳效率的兩個因素,並討論兩者對系統的影響。本系統在格拉茲數大時,其效率提昇率有明顯改善,而不同的隔板位置對系統之間的效率亦有顯著影響。 同時在本文中,迴流系統因隔板裝置及不同的迴流比值而增加的能源消耗率也將與單行程系統作比較,以探討雙套管之加熱系統在低能源消耗率時,熱傳效率改善之最佳操作設計。

A new device of counterflow heat exchangers in concentric tubes with uniform wall temperature and with external refluxes has been designed. An orthogonal expansion technique for solving such a conjugated Graetz problem is developed and applied to investigate a substantially improving the heat transfer. An expression for calculating an infinite series of both positive and negative sets of eigenvalues and eigenfunctions was set up. Theoretical results show that the recycle-effect can enhance the heat transfer rate for large Graetz numbers were comparing with that in an open tube (without an inner tube inserted and without recycle). Competition between preheating effect and residence-time effect can be used to explain the heat transfer behavior. The effect of inserter location on the enhancement of heat transfer efficiency as well as on the increment of power consumption has also been discussed.

目錄
中文摘要I
英文摘要II
目錄III
表目錄V
圖目錄XI
符號說明XX
第一章 緒論1
1.1 前言1
1.2 迴流效應對系統的影響2
1.3 研究動機3
1.4 研究架構4
第二章 文獻回顧5
2.1 文獻回顧5
2.2 格拉茲問題. 6
第三章 基本理論9
3.1 二行程無迴流模型之理論分析14
3.2 末端出口模型之理論分析21
3.3 出口迴流至末端模型之理論分析28
3.4 末端迴流至入口模型之理論分析35
3.5 內外層等體積流動模型之理論分析41
3.6 熱傳效率的改善47
3.7 能源消耗之增加率問題48
第四章 結果討論51
4.1 二行程無迴流模型之結果討論52
4.2 末端出口模型之結果討論54
4.3 出口迴流至末端模型之結果討論57
4.4 末端迴流至入口模型之結果討論61
4.5 內外等體積流動模型之結果討論65
4.6 增加的能源消耗問題68
第五章 結論與建議152
5.1 二行程無迴流模型152
5.2 末端出口模型153
5.3 出口迴流至末端模型153
5.4 末端迴流至入口模型154
5.5 內外等體積流動模型154
5.6 五種模型之比較155
5.7 未來研究方向156
參考文獻158
附錄(一)163
附錄(二)166
附錄(三)170
附錄(四)176

1.Hornut J. M., H. Dhaouadi, S. Poncin, N. Midoux, J. M. Hornut, G. Wild, Hydrodynamics and flow regimes in external loop airlift reactor, Chem. Eng. Sci., 1999, 54, 5211-5221.
2.Korpijarvi J., P. Oinas, J, Reunanen, Hydrodynamics and mass transfer in an airlift reactor, Chem. Eng. Sci. 1999, 54, 2255-2262.
3.Camarasa E., E. Carvalho, L.A.C. Meleiro etc., A Hydrodynamic model air-lift reactors, Chem. Eng. Processing, 2001, 121-128.
4.Ruitenberg R., Carl E. Schultz, Cees J.N. Buisman, Bio-oxidation of minerals in air-lift loop bioreactors, Int. J. Miner. Process, 62, 2001, 271-278.
5.Couvert A., D. Bastoul, M. Rouston, A. Line, P. Chatellier, Prediction of liquid velocity and gass hold-up in rectangular air-lift reactors of different scales, Chem. Eng. Processing, 40, 2001, 113-119.
6.Vial C., S. Poncin, G. Wild, N. Midoux, A simple method for regime identification and flow characterization in bubble columns and airlift reactors, Chem. Eng. Processing, 40, 2001, 135-151.
7.Gu X., S. H. Chiang, Anovel Flotation column for oily water cleanup, Separation and Purification Technology, 16, 1999, 193-203.
8.Fakeeha, A. H., B. Y. Jibril, G. Ibrahim, A. E. Abasaeed, Medium effects on oxygen mass transfer in a plunging jet loop reactor with a downcomer, Chem. Eng. Processing, 38, 1999, 259-265.
9.Moller K. P., W. Bohringer, A. E. Schnitzer, E. V. Steen, C. T. O’Connor, The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5, Microporous and Mesoporous Materals, 29, 1999, 127-144.
10.Couvert A., M.Roustan, P. Chatellier, Two-phase hydrodynamic study of a retangular air-lift loop reactor with an internal baffle, Chem. Eng. Science 54, 1999, 5245-5252.
11.Dhaouai H., S. Poncin, N. Midoux, G. Wild, Gas-liguid mass transfer in an airlift reactor-analytical solution and experimental confirmation, Chem. Eng. Processing, 40, 2001, 129-133.
12.Wasserscheid P., M. Eichmann, Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor, Catalysis Today, 66, 2001, 309-316.
13.Heiszwolf J. J., L. B. Engelvaart, M. G. Eijnden, M.T. Kreutzer, F. K. Jacob, A. Moulijn, Hydrodynamic aspects of the monolith loop reactor, Chem. Eng. Science 56, 2001, 805-812.
14.Cousins A. K., Bounds on heat Transfer in a periodic Graetz problem, J. of Heat Transfer, 113, 1991, 43-47.
15.Sefik B., Numerical solution of Graetz problem with axial conduction, Numerical Heat Transfer, Part A, 21, 1992, 493-500.
16.Fourcher B., K. Mansouri, An approximate analytical solution to the Graetz problem with periodic inlet temperature, Int. J. Heat and Fluid Flow, 18, 1997, 229-235.
17.Unsal M., A solution for the complex eigenvalues and eigenfunction of the periodic Graetz problem, Int. Comm. Heat Mass Transfer, 25, 1998, 585-592.
18.Ho C. D., An analytical study of laminar counterflow double-pass heat exchangers with external refluxes, Int. J. Heat and Mass Transfer, 43, 2000, 3263-3274.
19.Tasi S. W.,H. M. Yeh, A study of the separation efficiency in horizontal thermal diffusion columns with external refluxes, Can. J. Chem. Eng.,63, 1985, 406-410.
20.Yeh H. M, S. W. Tsai, C. L. Chlang, Effects of recycle on heat and mass transfer between parallel-plate wall with equal fluxes, Int. J. Heat Mass Transfer, 31, 1988, 1853-1860.
21.Yeh H. M, Chang T. W., S. W. Tsai, A study of the Graetz problems in Concentric-tube continuous-contant countercurrent separation processes with recycles at both ends, Separation science and technology, 21, 1986, 403-419.
22.Brown, G. M., Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, A.I.C.H.E. Journal, 1960, 6, 179-183.
23.Papoutsakis, E., D. Rarmkrishna and H. C. Lim, The extended Greatz Problem with Dirichlet wall boundary conditions, Applied Scientific Research, 1980, 36, 13-34.
24.Hwang, G. J. and H. C. Lai, Laminar convective heat transfer in a horizontal isothermal tube for high Rayleigh numbers, Int. J. Heat Mass Transfer, 1994, 37, 1631-1640.
25.Barron, R. F., X. Wang, R. O. Warrington, and T. Ameel, Evaluation of Eigenvalues for the Graetz Problem in Slip-Flow, Int. Comm. Heat Mass Transfer, 1996, 4, 563-574.
26.Weigand, B., An extract analytical solution for the extended turbulent Graetz problem with Dirichlet wall boundary coundary conditions for pipe and channel flows, Int. J. Heat Mass Transfer, 1996, 8, 1625-1637.
27.Barron, R. F., X. Wang, T. A. Ameel and R. O. Warrington, The Graetz Problem extended to slip-flow, Int. J. Heat Mass Transfer, 1997, 40, 1817-1823.
28.Min, T., J. Y. Yoo and H. Choi, Laminar convective heat transfer of a Bingham plastic in a circular pipe, Int. J. Heat Mass Transfer, 1997, 40, 3025-3037.
29.Perelman, T. L., On Conjugated Problems of Heat Transfer, Int. J. Heat Mass Transfer, 1961, 3, 293-303.
30.Sellars, J. R., M. Tribus and J. S. Klein, Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit-The Graetz Problem Extended, Trans. Am. Mech. Engrs. 1956, 78,441-448.
31.Nunge, R. J., and W. N. Gill, Analysis of Heat or MassTransfer in Some Countercurrent Flows, Int. J. Heat Mass Transfer, 1965, 8, 873-886
32.Nunge, R. J., and W. N. Gill, An Analytical Study of laminar Counterflow Double-Pipe Heat Exchangers, AIChE J., 1966, 12, 279-289.
33.Papoutsakis, E., and, D. Ramkrishna, Conjugated Graetz Problems. I: General Formalism and a class of Solid-Fluid Problems, Chem. Eng. Sci., 1981, 36, 1381-1390.
34.Yeh H. M., S. W. Tsai and M. C. Hsiey, On the Examination of Recycle on Heat (and Mass) Transfer in Concentric Tubes, Can. J. of Chem. Eng., 1988, 66, 258-261.
35.Ho, C. D., and Sheu, W. S., The influence of recycle on double-pass heat and mass transfer through a parallel-plate device, Int. J. Heat Mass Transfer, 1985, 63, 406-411.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top