|
[1]Dufour, L., “The Diffusion Thermoeffect,” Arch. Sci. (Geneva) 45, 9 (1972). [2]Enskog, D., “A Generalization of Maxwell’s Second Kinetic Gas Theory,” Physik. Z., 12, 56(1991). [3]Chapman, S. and Dootson, F. W., “Thermal Diffusion,” Phil. Mag., 33, 248 (1917). [4]Chapman, S., “Thermal Diffusion of Rare Constituents in Gas Mixtures,” Ibid., 7 1 (1929). [5]Clusius, K. and Dickel, G., “New Process for Separation of Gas Mixtures and Isotopes,” Naturwiss., 26, 546 (1938) [6]Clusius, K. and Dickel, G., “The Separatiog-Tube Process for Liquids,” Ibid., 27, 148 (1939). [7]Powers, J. E. and Wilke, C. R., “Separation in Liquids by Thermal Diffusion,” AICHE J., 3, 213 (1957). [8]Chueh, P. L. and Yeh, H. M., “Thermal Diffusion in a Flate-Plate Column Inclined for Improved Performance,” AICHE J., 13, 37 (1967) [9]Yeh, H. M., “The Effect of Plate Spacing on the Degree of Separation in Inclined Thermal Diffusion Columns With Fixed Operation Expense,” Sep. Sci. Technol., 18, 585 (1983). [10]Washall, T. A. and Melpolder, F. W., “Improving the Separation Efficiency of Liquid Thermal Diffusion Columns,” Ind. Eng. Chem. Proc. Des. Dev., 1, 26 (1962). [11]Yeh, H. M. and Ward, H. C., “The Improvement in Separation of Concentric Tube Thermal Diffusion Columns,” Chem. Eng. Sci., 26, 937 (1971). [12]Rabinovich, G. D., Ivakhnik, V. P., Zimina K. I. And Sorokina N. G., “Use of Spiral Inserts In Thermal-Diffusion Columns,” Inzh.-Fiz. Zh., 35, 278 (1978). [13]Yeh, H. M. and Ho, F. J., “A Study of the Separation Efficiency of Wired Thermal Diffusion Columns with Tubes Rotating in Opposite Directions,” Chem. Eng. Sci., 30, 1381 (1975). [14]Yeh, H. M. and Tsai, S. W., “Improvement of Separation of Concentric-Tube Thermal Diffusion Columns with Viscous Heat Generation under Consideration of the Curvature Effect,” Sep. Sci. Technol., 16, 63, (1981). [15]Yeh, H. M. and Hsieh, S. J., “A Study on the Separation Efficiencies of Rotating-Tube Wired Thermal-Diffusion Columns under Higher Flow-Rate Operations,” Ibid., 18, 1065 (1983). [16]Sullivan, L. J., Rupple, T. C. and Willingham C. B., “Rotary and Packed Thermal Diffusion Fractionating Columns for Liquids,” Ind. Eng. Chem., 47, 208 (1955). [17]Emery, A. E. and Lorenz, M., “Thermal Diffusion in a Packed Column,” AICHE J., 9, 660 (1963). [18]Lorenz, M. and Emery, A. E., “The Packed Thermal Diffusion Column,” Chem. Eng. Sci., 11, 16 (1959). [19]Yeh, H. M. and Chu, T. Y., “A Study of the Separation Efficiency of Continuous-Type Packed Thermal Diffusion Columns,” Ibid., 29, 1421 (1974) [20]Gaeta, F. S. and Cursio, N. M., “Thermogravitational Effect in Macromolecular Solutions,” J. Polym. Sci., Part A-1, 7, 1697 (1969). [21]Pawlowski, A. T., “A Study of Thermal Diffusion of Some Aqueous Carbohydrote Solutions,” Ph.D Thesis, Rutgers University, 1965; University Microfilms No. 66-1194. [22]Stickle, G. P., “Liquid Phase Thermal Diffusion Applied to Biological Systems,” Ph.D. Thesis, University of Tennessee, December 1954. [23]Seelback, C. W., “Thermal Diffusion of Liquids and Other Biochemical Substances,” Ph.D. Thesis, Purdue University, 1955; University Microfilms No. 11-659. [24]Touchstone, J. C. and Dobbins, M. F., “Separation of Biological Solutes by Liquid Thermal Diffusion,” Sep. Sci., 10, 617 (1975). [25] Gold, H., “Thermal Diffusion,” Clin. Chem., 17, 7 (1971). [26]Rutherford, W. M., “Separation of Isotopically Substituted Liquids in the Thermal Diffusion Column,” J. Chem. Phys., 59, 6061 (1973). [27]Abelson, P. H., Rosen, N. and Hoover, J. I., “Liquid Thermal Diffusion,” Naval Research Laboratory Report NRL-0-2982 (1946). Available from U.S. Office of Technical Service, Department of Commerce Document TID-5229. [28]Maza, J. and Davidovits, P., “Thermal Diffusion of Br2 and Cl2 in Noble Gases,” J. Chem. Phys., 60, 1624 (1974). [29]Mathur, B. P. and Watson, W. W., “Thermal Diffusion Factor for Isotopic CO+,” J. Chem. Phys., 60, 1624 (1974). [30]Lodding, A. and Ott, A., “Isotope Thermotransport in LiquidPotassium, Rubidium, and Gallium,” Z. Naturforsch., 21a, 13-4 (1966). [31]Ott, A. and Lunden, A., “Thermal Diffusion of Isotopes in Pure Molten Lithium Metal,” Ibid., 19a, 822 (1964). [32]Gustafsson, S. and Lunden, A., “Thermal Diffusion of Li Isotopes in Fused Pure LiNO3,” Ibid., 17a, 550 (1962). [33]Alexander, K. F. and Dreyer, R., “Separation of Chlorine Isotopes by Thermodiffusion in the Fluid Phase,” Ibid., 10a, 1034 (1955). [34]Rabinovich, G. D. and Ivakhnik, V. P., “Thermodiffusion in Liquid and Gaseous Multicomponent Isotope Mixtures,” Inzh.-Fiz. Zh., 22, 1020 (1972). [35]Rutherford, W. M., Weyler, F. W. and Eck, C. F., “Apparatus for the Thermal Diffusion Separation of Stable Gaseous Isotopes,” Review Science Instrum, 39, 94 (1968). [36]Grew, K. E. and Wakehorn, W. A., “A Redetermination of the Thermal Diffusion Factor for Some Inert Gas Mixtures: I,” J. Phys., P.4, 1548 (1971). [37]Gonsior, B., “Thermal Diffusion Appartus for Separation of Tritium from Low-Concentration Solution,” Z. Angew. Phys., 13, 545 (1961). [38]Shimizu, M. and Ravoire, J., “Tritium Enrichment by Thermal Diffusion I. Calculations for an Installation for the Measurement of Nature Tritium,” Rept CEA-R3015 (C.E.N. Saclay, France). (1966). [39]Israel, G. W., “Measurements of the Annual Course of Tritium in the 1960-61 Rain by Isotope Concentration in the Separation Column,” Z. Naturforsch., 17a, 925 (1962). [40]Verhagen, B. Th., “Rapdi Isotope Enrichment of Gases by Thermal Diffusion for Unclear Dating,” Radioactive Dating and Methods of Low-Level Countingg International Atomic Energy Agency; Vienna, 1967. [41]Humphreys, A. E., “Thermal Diffusion Factor of HD-D2,” J. Chem. Phys., 47, 874 (1967) [42]Neubert, A., Heimbach, H. and Ihle, H. R., “Design and Performance of A Thermal Diffusion Column for Separation of the Hydrogen Isotopes,” 12th. Int. Symp. On Fusion Technol., Julich, (German) (1983). [43]Hirota, K. and Kimara, O., “Enrichment of the Heavy Water by Thermal Diffusion,” Bull. Chem. Soc. Japan., 17, 42 (1942). [44]Prigogine, I., Brouckere, L. de and Buess, R., “Thermodiffusion in the Liquid Phase V. Thermodiffusion of Heavy Water,” Physica 18, 915 (1952). [45]Korsching, H. and Wirtz, K., “Separation of Liquid Mixtures in the Clusius Separation Tube,” Naturwiss., 27, 367 (1939). [46] 潘家寅譯 “核廢料” ,徐氏基金會出版, (1967) [47]Yeh, H. M. and Tsai, C. S., ”The Improvement in Separation of Continuous-Type Thermal Diffusion Columns with Wall Set in Parallel Opposite Motion,” Chem. Eng. Sci., 27, 2065 (1972). [48]Yeh, H. M. and Cheng, S. M., “A Study on the Separation Efficiency of Rotary Thermal Diffusion Column,” Ibid., 28, 1803 (1973). [49]Ramser, J. H., “Theory of Thermal Diffusion under Linear Fluid Shear,” Ind. Eng. Chem. 49, 155 (1957). [50]Sasaki, K., Miura, N. and Yoshitomi, T., “Thermal Separation Co;umn with Vertical Barriers I. Analytical Studies on the Thermal Separation Column Having Vertical Barriers,” Bull. Chem. Eng. Soc. Japan 49, 363 (1976). [51]Yeh, H. M. and Chu, T.Y., “The Generalised Equation of Separation in Thermal Diffusion Columns by Linear approximation,” Chem. Eng. Sci., 30, 47 (1975). [52] Yeh, H. M., “The effect of Curvature on the Transport Coefficients of Thermal Diffusion in Concentric-Tube Column,” Sep. Sci. Technol., 11, 455 (1976). [53]Yeh, H. M. and Lu, C. C., “Experimental Studies on the Degree of Separation in Thermal Diffusion in Column,” Sep. Sci. Technol., 13, 79 (1978). [54]Yeh, H. M. and Chiou, C. F., “Comparison of Various Methods of Calculating a Separation Factor in Thermal Diffusion,” Ibid., 14, 645 (1979). [55]Yeh, H. M. and Tsai, S. W., “A Study of the Separation Efficiency of Rotated Concentric-Tube Thermal Diffusion Columns with Helical Plate Inserted as a Spacer in the Annulus,” J. Chem. Eng. Japan, 14, 90 (1981). [56]Yeh, H. M. and Tsai, S. W., “Separation Efficiency of Rotary Thermal Diffusion Columns with the Inner Tube Cooled and the Outer Tube Heated,” Sep. Sci. Technol., 17, 1075 (1982). [57] Yeh, H. M. and Yeh, Y. T., “Separation Theory in Improved Thermal Diffusion Columns,” Chem. Eng. J., 25, 55 (1982). [58]Powers, J. E., “Transient Behavior of Thermal Diffusion Column,” Ind. Eng. Chem., 53, 577 (1961). [59]Jones, R. C. and Furrt, W. H., “The Separation of Isotopes by Thermal Diffusion,” Rev. Mod. Phys., 18, 151 (1946). [60]Waldmann, L., “Transporterscheinungen in Gasen Von Mittlerem Druck,” Handbuck der Phsik (1958). [61]Roos, W. J. and Rutherford, W. H., “Separation of Xenon Isotopes in the Thermal Diffusion Column,” J. Ceem. Phys., 52, 1684 (1970). [62]Jones, R. C., “The Theory of the Thermal Diffusion Coefficient for Isotopes II.,” Phys. Rev., 59, 1019 (1941). [63]Saviron, J. M., Gonzalez, D., Brun, J. L. and Madariaga, J. A., “Non-Steady Separation of Multicomponent Isotopic Mixtures in Clusius-Dickel Columns,” J. Phys. Soc. Japan 39, 1417 (1975). [64]Rutherford, W. M., “Separation of Isotopes in the Thermal Diffusion Column,” Sep. Pur. Meth., 4, 305 (1975). [65]Standen, A., Encyclopedia of Chemical Technology, 3rd Edn., 7, p.549, Wiley, N. Y. 1978. [66]Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in a Batch-Type Thermal Diffusion Column,” Chem. Eng. Sci., 39(7/8), 1277 (1984). [67]Von, Halle E., “AEC Research and Development Report K-1420 1959. [68]Power, J. E., “Thermal Diffusion,” —New Chemical Engineering Separation Techniques (Edited by Schoen Herbert M.) Ch. 1. Interscience, V.Y. 1962. [69]Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in a Continuous-Type Inclined Thermal Diffusion Column,” Sep. Sci. Technol., 20, 101 (1985). [70]Frazier, D., “Analysis of Transverse-Flow Thermal Diffusion,” Ind. Eng. Chem. Proc. Des. Dev., 1, 237 (1962). [71]Grasselli, R. and Frazier, D., “A Comparative Study of Continuous Liquid Thermal Diffusion Systems,” Ibid., 1, 241 (1962). [72]Grasselli, R. and Brown, G. R., “Full-Scale Thermal Diffusion Equipment,” Chem. Eng. Prog., 57, 59 (1961). [73]Rabinovich, G. D., “Theory of Thermodiffusion Separation According to the Frazier Scheme,” Inzh.-Fiz. zh., 31, 514 (1976). [74]Sovorov, A. V. and Rabinovich, G. D., “Theory of a Thermal Diffusion Apparatus with Transverse Flows,” Inzh-Fiz. Zh, 41, 231 (1981). [75]Fox, M. C., “Thermal Diffusion as Adjunct of Electromagnetic Process,” Chem. Met. Eng. 52, 102 (1945). [76]Yeh, H. M. and Tang, S. C., “Experimental Studies on the Separation of Deuterium Oxide in Continuous Thermal Diffusion Column for low Concentration Range,” Sep. Sci. Technol., (1985).
|