(3.238.7.202) 您好!臺灣時間:2021/02/26 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭家展
研究生(外文):Jia-Jan Guo
論文名稱:迴流效應於連續型熱擴散塔提煉重水之影響
論文名稱(外文):An Analytical study on the Enrichment of Heavy Water in Continuous-Type Thermal-Diffusion Columns with External Refluxes
指導教授:何啟東
指導教授(外文):Chii-Dong Ho
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:176
中文關鍵詞:熱擴散塔迴流效應重水
外文關鍵詞:Thermal Diffusionrecycle effectheavy water
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱擴散塔分離程序,通常是應用於普通方法不易分離之高價物質。在第二次世界大戰時,美國曾經在Oak Ridge國家研究所,以此分離程序成功的分離鈾之同位素。由於熱擴散塔之分離效率,取決於各成份分子量差與分子量和之比例,比例越大分離效率越好。而氫同位素之分子量差與分子量和之比例遠大於鈾同位素,因此以熱擴散塔分離氫同位素,其分離效率將是可以預期的。 利用中間鑲入隔板與薄膜之改良型熱擴散塔,再加上恰當回流比例與傾斜角度,可經由質量結算得到全濃度範圍提煉重水時,不同回流比與傾斜角度之分離度之公式。由公式的計算結果結果發現,慎選傾斜角度與回流比,將有助於提昇分離度。

Thermal diffusion separation process can be applied to the separation of hightly valuable materials, that are difficult or impossible to separate, by other means. The process has been used at Oak Ridge Laboratory to separate the uranium isotopes in World War Ⅱ. For separation of hydrogen isotopes, the present method is more effective because of the large ratio of the molecular weight difference to the sum.
A new device of inserting an impermeable sheet or a permeable barrier to divide the thermal diffusion columns into two subchannels with external refluxes at the ends, resulting in substantially improving the separation efficiency of heavy water, has been developed and investigated by an orthogonal expansion technique. The analytical results are represented graphically and compared with that in an open column of the same size with recycle. Considerable improvement on the enrichment of heavy water is obtainable by employing such devices with an impermeable sheet or a permeable barrier instead of using the open column without external refluxes. The effect of sheet or barrier location on the enhancement of the separation efficiency of heavy water has also been studied.

第一章 緒論……………………………………………………………1
1-1熱擴散之沿革………………………………………………………..1
1-2熱擴散之應用……………………………………………………...3
1-3重水及其用途………………………………………………………..6
1-4 研究動機、目的與大綱……………………………………………...8
第二章 傳統之熱擴散方程式………………………………………….9
2-1 熱擴散塔之傳送公式………………………………………………9
2-2 傳送公式之簡化-常數近似………………………………………15
第三章 無回流之改良型熱擴散塔……………….………………….20
3-1 鑲入隔板之熱擴散塔………………………….…..……………..20
3-1-1 直立系統……………………………………………………….24
3-1-2 傾斜角之系統………………………………………..………….25
3-1-3固定塔面積的不同長寬比…………………….………………..25
3-1-3-1 直立系統…………………………………………….………..27
3-1-3-2 傾斜角之系統……………….………………………………..27
3-2 鑲入薄膜之熱擴散塔…………………………………………….27
3-2-1 直立系統………..………………………….………………….39
3-2-2 傾斜角之系統………………………………………………….40
3-2-3固定塔面積的不同長寬比…………….……………………….41
3-2-3-1 直立之系統…………………………………………………..43
3-2-3-2 傾斜角之系統 ………..………….…………………………43
第四章 具回流之改良型熱擴散塔………………………………….45
4-1 統治方程式…………………………………………..…………….45
4-2鑲入隔板之熱擴散塔…………………………………..….……..47
4-2-1 直立系統……………………………………………………….49
4-2-2 傾斜角之系統…………………………………………………...51
4-2-3固定塔面積的不同長寬比…….……………………………….53
4-2-3-1直立系統…………………………………..………………….54
4-2-3-2傾斜角之系統………………….……..………………………54
4-3鑲入薄膜之熱擴散塔………………………….…...…………….55
4-3-1直立系統…………………….……………….………………….56
4-3-2 傾斜角之系統…………………………………………………...57
4-3-3固定塔面積的不同長寬比………………………………………59
4-3-3-1直立系統…………………………………..…………….……61
4-3-1-2傾斜角之系統…………………………………………………61
第五章 結果與討論……………………………………………….….63
5-1無回流型中間鑲入隔板之熱擴散塔……………………………..63
5-1-1 直立系統……………………………………………………….63
5-1-2 傾斜角之系統………………………..………………………..64
5-1-3 固定塔面積的不同長寬比………………………….………….64
5-2無回流型中間鑲入薄膜之熱擴散塔…………………………….65
5-2-1 直立系統……………………………………………………….65
5-2-2 傾斜角之系統…………………………………………………65
5-2-3 固定塔面積的不同長寬比…………………………….……….66
5-3具回流型中間鑲入隔板之熱擴散塔………………………………66
5-3-1 直立系統………………………………………………………...66
5-3-2 傾斜角之系統…………………………………………………...67
5-3-3 固定塔面積的不同長寬比………………….………………….68
5-4具回流型中間鑲入薄膜之熱擴散塔………………………..……68
5-4-1 直立系統……………………………………………………….68
5-4-2 傾斜角之系統………………………………………………….68
5-4-3 固定塔面積的不同長寬比…………………………………….69
第六章 結論與未來工作…………………………………………….71
6-1 結論………………………………………………………………71
6-2 未來工作…………………………………………..……………..72
符號說明………………………………………………………………158
參考資料………………………………………..…………………….161
附錄…………………………………………………………………..172

[1]Dufour, L., “The Diffusion Thermoeffect,” Arch. Sci. (Geneva) 45, 9 (1972).
[2]Enskog, D., “A Generalization of Maxwell’s Second Kinetic Gas
Theory,” Physik. Z., 12, 56(1991).
[3]Chapman, S. and Dootson, F. W., “Thermal Diffusion,” Phil. Mag., 33, 248 (1917).
[4]Chapman, S., “Thermal Diffusion of Rare Constituents in Gas Mixtures,” Ibid., 7 1 (1929).
[5]Clusius, K. and Dickel, G., “New Process for Separation of Gas Mixtures and Isotopes,” Naturwiss., 26, 546 (1938)
[6]Clusius, K. and Dickel, G., “The Separatiog-Tube Process for Liquids,” Ibid., 27, 148 (1939).
[7]Powers, J. E. and Wilke, C. R., “Separation in Liquids by Thermal Diffusion,” AICHE J., 3, 213 (1957).
[8]Chueh, P. L. and Yeh, H. M., “Thermal Diffusion in a Flate-Plate Column Inclined for Improved Performance,” AICHE J., 13, 37 (1967)
[9]Yeh, H. M., “The Effect of Plate Spacing on the Degree of Separation in Inclined Thermal Diffusion Columns With Fixed Operation Expense,” Sep. Sci. Technol., 18, 585 (1983).
[10]Washall, T. A. and Melpolder, F. W., “Improving the Separation Efficiency of Liquid Thermal Diffusion Columns,” Ind. Eng. Chem. Proc. Des. Dev., 1, 26 (1962).
[11]Yeh, H. M. and Ward, H. C., “The Improvement in Separation of Concentric Tube Thermal Diffusion Columns,” Chem. Eng. Sci., 26, 937 (1971).
[12]Rabinovich, G. D., Ivakhnik, V. P., Zimina K. I. And Sorokina N. G., “Use of Spiral Inserts In Thermal-Diffusion Columns,” Inzh.-Fiz. Zh., 35, 278 (1978).
[13]Yeh, H. M. and Ho, F. J., “A Study of the Separation Efficiency of Wired Thermal Diffusion Columns with Tubes Rotating in Opposite Directions,” Chem. Eng. Sci., 30, 1381 (1975).
[14]Yeh, H. M. and Tsai, S. W., “Improvement of Separation of Concentric-Tube Thermal Diffusion Columns with Viscous Heat Generation under Consideration of the Curvature Effect,” Sep. Sci. Technol., 16, 63, (1981).
[15]Yeh, H. M. and Hsieh, S. J., “A Study on the Separation Efficiencies of Rotating-Tube Wired Thermal-Diffusion Columns under Higher Flow-Rate Operations,” Ibid., 18, 1065 (1983).
[16]Sullivan, L. J., Rupple, T. C. and Willingham C. B., “Rotary and Packed Thermal Diffusion Fractionating Columns for Liquids,” Ind. Eng. Chem., 47, 208 (1955).
[17]Emery, A. E. and Lorenz, M., “Thermal Diffusion in a Packed Column,” AICHE J., 9, 660 (1963).
[18]Lorenz, M. and Emery, A. E., “The Packed Thermal Diffusion Column,” Chem. Eng. Sci., 11, 16 (1959).
[19]Yeh, H. M. and Chu, T. Y., “A Study of the Separation Efficiency of Continuous-Type Packed Thermal Diffusion Columns,” Ibid., 29, 1421 (1974)
[20]Gaeta, F. S. and Cursio, N. M., “Thermogravitational Effect in Macromolecular Solutions,” J. Polym. Sci., Part A-1, 7, 1697 (1969).
[21]Pawlowski, A. T., “A Study of Thermal Diffusion of Some Aqueous Carbohydrote Solutions,” Ph.D Thesis, Rutgers University, 1965; University Microfilms No. 66-1194.
[22]Stickle, G. P., “Liquid Phase Thermal Diffusion Applied to Biological Systems,” Ph.D. Thesis, University of Tennessee, December 1954.
[23]Seelback, C. W., “Thermal Diffusion of Liquids and Other Biochemical Substances,” Ph.D. Thesis, Purdue University, 1955; University Microfilms No. 11-659.
[24]Touchstone, J. C. and Dobbins, M. F., “Separation of Biological Solutes by Liquid Thermal Diffusion,” Sep. Sci., 10, 617 (1975).
[25] Gold, H., “Thermal Diffusion,” Clin. Chem., 17, 7 (1971).
[26]Rutherford, W. M., “Separation of Isotopically Substituted Liquids in the Thermal Diffusion Column,” J. Chem. Phys., 59, 6061 (1973).
[27]Abelson, P. H., Rosen, N. and Hoover, J. I., “Liquid Thermal Diffusion,” Naval Research Laboratory Report NRL-0-2982 (1946). Available from U.S. Office of Technical Service, Department of Commerce Document TID-5229.
[28]Maza, J. and Davidovits, P., “Thermal Diffusion of Br2 and Cl2 in Noble Gases,” J. Chem. Phys., 60, 1624 (1974).
[29]Mathur, B. P. and Watson, W. W., “Thermal Diffusion Factor for Isotopic CO+,” J. Chem. Phys., 60, 1624 (1974).
[30]Lodding, A. and Ott, A., “Isotope Thermotransport in LiquidPotassium, Rubidium, and Gallium,” Z. Naturforsch., 21a, 13-4 (1966).
[31]Ott, A. and Lunden, A., “Thermal Diffusion of Isotopes in Pure Molten Lithium Metal,” Ibid., 19a, 822 (1964).
[32]Gustafsson, S. and Lunden, A., “Thermal Diffusion of Li Isotopes in Fused Pure LiNO3,” Ibid., 17a, 550 (1962).
[33]Alexander, K. F. and Dreyer, R., “Separation of Chlorine Isotopes by Thermodiffusion in the Fluid Phase,” Ibid., 10a, 1034 (1955).
[34]Rabinovich, G. D. and Ivakhnik, V. P., “Thermodiffusion in Liquid and Gaseous Multicomponent Isotope Mixtures,” Inzh.-Fiz. Zh., 22, 1020 (1972).
[35]Rutherford, W. M., Weyler, F. W. and Eck, C. F., “Apparatus for the Thermal Diffusion Separation of Stable Gaseous Isotopes,” Review Science Instrum, 39, 94 (1968).
[36]Grew, K. E. and Wakehorn, W. A., “A Redetermination of the Thermal Diffusion Factor for Some Inert Gas Mixtures: I,” J. Phys., P.4, 1548 (1971).
[37]Gonsior, B., “Thermal Diffusion Appartus for Separation of Tritium from Low-Concentration Solution,” Z. Angew. Phys., 13, 545 (1961).
[38]Shimizu, M. and Ravoire, J., “Tritium Enrichment by Thermal Diffusion I. Calculations for an Installation for the Measurement of Nature Tritium,” Rept CEA-R3015 (C.E.N. Saclay, France). (1966).
[39]Israel, G. W., “Measurements of the Annual Course of Tritium in the 1960-61 Rain by Isotope Concentration in the Separation Column,” Z. Naturforsch., 17a, 925 (1962).
[40]Verhagen, B. Th., “Rapdi Isotope Enrichment of Gases by Thermal Diffusion for Unclear Dating,” Radioactive Dating and Methods of Low-Level Countingg International Atomic Energy Agency; Vienna, 1967.
[41]Humphreys, A. E., “Thermal Diffusion Factor of HD-D2,” J. Chem. Phys., 47, 874 (1967)
[42]Neubert, A., Heimbach, H. and Ihle, H. R., “Design and Performance of A Thermal Diffusion Column for Separation of the Hydrogen Isotopes,” 12th. Int. Symp. On Fusion Technol., Julich, (German) (1983).
[43]Hirota, K. and Kimara, O., “Enrichment of the Heavy Water by Thermal Diffusion,” Bull. Chem. Soc. Japan., 17, 42 (1942).
[44]Prigogine, I., Brouckere, L. de and Buess, R., “Thermodiffusion in the Liquid Phase V. Thermodiffusion of Heavy Water,” Physica 18, 915 (1952).
[45]Korsching, H. and Wirtz, K., “Separation of Liquid Mixtures in the Clusius Separation Tube,” Naturwiss., 27, 367 (1939).
[46] 潘家寅譯 “核廢料” ,徐氏基金會出版, (1967)
[47]Yeh, H. M. and Tsai, C. S., ”The Improvement in Separation of Continuous-Type Thermal Diffusion Columns with Wall Set in Parallel Opposite Motion,” Chem. Eng. Sci., 27, 2065 (1972).
[48]Yeh, H. M. and Cheng, S. M., “A Study on the Separation Efficiency of Rotary Thermal Diffusion Column,” Ibid., 28, 1803 (1973).
[49]Ramser, J. H., “Theory of Thermal Diffusion under Linear Fluid Shear,” Ind. Eng. Chem. 49, 155 (1957).
[50]Sasaki, K., Miura, N. and Yoshitomi, T., “Thermal Separation Co;umn with Vertical Barriers I. Analytical Studies on the Thermal Separation Column Having Vertical Barriers,” Bull. Chem. Eng. Soc. Japan 49, 363 (1976).
[51]Yeh, H. M. and Chu, T.Y., “The Generalised Equation of Separation in Thermal Diffusion Columns by Linear approximation,” Chem. Eng. Sci., 30, 47 (1975).
[52] Yeh, H. M., “The effect of Curvature on the Transport Coefficients of Thermal Diffusion in Concentric-Tube Column,” Sep. Sci. Technol., 11, 455 (1976).
[53]Yeh, H. M. and Lu, C. C., “Experimental Studies on the Degree of Separation in Thermal Diffusion in Column,” Sep. Sci. Technol., 13, 79 (1978).
[54]Yeh, H. M. and Chiou, C. F., “Comparison of Various Methods of Calculating a Separation Factor in Thermal Diffusion,” Ibid., 14, 645 (1979).
[55]Yeh, H. M. and Tsai, S. W., “A Study of the Separation Efficiency of Rotated Concentric-Tube Thermal Diffusion Columns with Helical Plate Inserted as a Spacer in the Annulus,” J. Chem. Eng. Japan, 14, 90 (1981).
[56]Yeh, H. M. and Tsai, S. W., “Separation Efficiency of Rotary Thermal Diffusion Columns with the Inner Tube Cooled and the Outer Tube Heated,” Sep. Sci. Technol., 17, 1075 (1982).
[57] Yeh, H. M. and Yeh, Y. T., “Separation Theory in Improved Thermal Diffusion Columns,” Chem. Eng. J., 25, 55 (1982).
[58]Powers, J. E., “Transient Behavior of Thermal Diffusion Column,” Ind. Eng. Chem., 53, 577 (1961).
[59]Jones, R. C. and Furrt, W. H., “The Separation of Isotopes by Thermal Diffusion,” Rev. Mod. Phys., 18, 151 (1946).
[60]Waldmann, L., “Transporterscheinungen in Gasen Von Mittlerem Druck,” Handbuck der Phsik (1958).
[61]Roos, W. J. and Rutherford, W. H., “Separation of Xenon Isotopes in the Thermal Diffusion Column,” J. Ceem. Phys., 52, 1684 (1970).
[62]Jones, R. C., “The Theory of the Thermal Diffusion Coefficient for Isotopes II.,” Phys. Rev., 59, 1019 (1941).
[63]Saviron, J. M., Gonzalez, D., Brun, J. L. and Madariaga, J. A., “Non-Steady Separation of Multicomponent Isotopic Mixtures in Clusius-Dickel Columns,” J. Phys. Soc. Japan 39, 1417 (1975).
[64]Rutherford, W. M., “Separation of Isotopes in the Thermal Diffusion Column,” Sep. Pur. Meth., 4, 305 (1975).
[65]Standen, A., Encyclopedia of Chemical Technology, 3rd Edn., 7, p.549, Wiley, N. Y. 1978.
[66]Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in a Batch-Type Thermal Diffusion Column,” Chem. Eng. Sci., 39(7/8), 1277 (1984).
[67]Von, Halle E., “AEC Research and Development Report K-1420 1959.
[68]Power, J. E., “Thermal Diffusion,” —New Chemical Engineering Separation Techniques (Edited by Schoen Herbert M.) Ch. 1. Interscience, V.Y. 1962.
[69]Yeh, H. M. and Yang, S. C., “The Enrichment of Heavy Water in a Continuous-Type Inclined Thermal Diffusion Column,” Sep. Sci. Technol., 20, 101 (1985).
[70]Frazier, D., “Analysis of Transverse-Flow Thermal Diffusion,” Ind. Eng. Chem. Proc. Des. Dev., 1, 237 (1962).
[71]Grasselli, R. and Frazier, D., “A Comparative Study of Continuous Liquid Thermal Diffusion Systems,” Ibid., 1, 241 (1962).
[72]Grasselli, R. and Brown, G. R., “Full-Scale Thermal Diffusion Equipment,” Chem. Eng. Prog., 57, 59 (1961).
[73]Rabinovich, G. D., “Theory of Thermodiffusion Separation According to the Frazier Scheme,” Inzh.-Fiz. zh., 31, 514 (1976).
[74]Sovorov, A. V. and Rabinovich, G. D., “Theory of a Thermal Diffusion Apparatus with Transverse Flows,” Inzh-Fiz. Zh, 41, 231 (1981).
[75]Fox, M. C., “Thermal Diffusion as Adjunct of Electromagnetic Process,” Chem. Met. Eng. 52, 102 (1945).
[76]Yeh, H. M. and Tang, S. C., “Experimental Studies on the Separation of Deuterium Oxide in Continuous Thermal Diffusion Column for low Concentration Range,” Sep. Sci. Technol., (1985).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔