跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柴浣蘭
研究生(外文):Wan-Lan Chai
論文名稱:都市垃圾焚化灰渣掩埋特性及滲出水預測模式之研究
論文名稱(外文):Characteristics and Modeling of Leachate from Landfill of Incinerator Ashes
指導教授:高思懷高思懷引用關係
指導教授(外文):Sue-Huai Gau
學位類別:碩士
校院名稱:淡江大學
系所名稱:水資源及環境工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:92
中文關鍵詞:焚化灰渣滲出水預測模式掩埋吸附脫附
外文關鍵詞:incinerator ashesleachate modellandfilladsorptiondesorption
相關次數:
  • 被引用被引用:8
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區垃圾處理用地取得不易,故垃圾經由焚化處理,以達減量安定衛生之目的,是處理都市垃圾問題整體規劃中不可或缺之一環,惟焚化灰渣只為中間處理,爾後仍須以掩埋方式處置,因此探討灰渣掩埋特性及灰渣滲出水水質為刻不容緩的工作。為了有效且迅速地處理隨著人口日益成長及都市型態改變而逐漸增加的垃圾量,並達到符合現階段生活需求的標準,未來台灣使用焚化處理作為都市垃圾處理方式是目前極力推展之政策。但是衛生掩埋場的設置仍舊是解決都市垃圾處理問題所無法避免的,其也勢必成為焚化灰渣之最終處置方法。
本研究以採自都市垃圾焚化廠之焚化底灰進行模擬掩埋實驗,於室內設立掩埋管柱,再於室溫下模擬降雨,管柱中兩槽以蒸餾水實施每日淋滲;另兩槽則分別以TCLP1、TCLP2萃取液進行淋滲實驗,並對滲出水作長期的分析,藉由觀測結果比對有機物及無機物在不同pH值下之溶出趨勢及探討其隨掩埋時間之滲出情形。
研究結果發現,由於焚化灰渣具有的鹼度及緩衝能力,使滲出水不會因淋滲液具有較低pH值而產生pH值偏低之較難處理的狀況,且COD在短期雖無明顯固定的關係,但BOD5則明顯地受淋滲液pH值之變化所影響,短期內可以藉由掩埋層中微生物之作用予以有效降低。同時,比對底灰在不同的萃取液淋滲下,經一段時間後其重金屬溶出之累積量與經批次TCLP溶出試驗之重金屬溶出總量得知,以酸液淋滲時不但不會加速重金屬的釋出,而且由於pH已降至微生物適於生長的範圍而產生生物作用,反而有將其滯留於灰渣中之效果。所以在推估底灰於掩埋過程中之重金屬滲出量及重金屬溶出趨勢時,針對其與pH值之關係進行探究,能提供相當程度的幫助。
本研究獲得之結果能對焚化灰渣中殘存有機物及垃圾中含量較多的重金屬在掩埋層中之滲出特性加以歸納,同時由於使用酸液作為淋滲實驗之淋滲液,可以做為日後焚化灰渣掩埋場操作參考及針對廢水處理設計提供建議。而沿用周氏及楊氏於吸脫附實驗中所求出之吸脫附參數代入本實驗掩埋特性之數據加以計算後,應用於高思懷及周錦東所發展之滲出水水質估算模式,建立符合實際狀況、具實用性之滲出水水質預測模式,由模擬之結果顯示對滲出水水質有極佳的模擬效果。
由於掩埋場滲出水主要來自降水,本研究旨在以水文現象為探討基礎,以Horton(1940)入滲理論作為降雨入滲至都市垃圾與焚化灰渣共同掩埋場之基礎方程式,並初步假設以平均流速作為水分在掩埋層中之流佈特性,且將水分在掩埋層中的移佈予以簡化,排除颱風或暴雨情形使水分在掩埋層中之移佈速度產生的差異。藉由降水量以及衛生掩埋場資料便可求取滲出水水量模式。
本水量模式推演的結果,經由兩座設立於室外之大型掩埋實驗模場的驗證,初步結果證實可以模擬出滲出水水量之變化特性,對於掩埋層較淺之衛生掩埋場滲出水量具有相當良好的估算結果。
In this study, four laboratory scale lysimeters were designed to simulate the landfill of incineration ashes in laboratory. Fixed quantity of extraction that was estimated by precipitation data and was installed to simulate the precipitation on the actual landfill site. Since the leaching condition of both organic material and heavy metals are important factors to the leachate quality, the simulation of precipitation in this study was considered first and migrated with different pH so as to explore the characteristics of pollutant leaching. The migration and extraction characteristics of the organic component and heavy metals in the ashes were established through long terms observing and batch analysis of ashes. According to these experiment data, Langmuir equation can be solved at the variety characteristics of the adsorption, desorption ability of organic matter in landfill layer at different temperature through statistics model.
Experiment results indicated that because of the alkalinity and buffer ability of incineration ashes, therefore pH of leachate would not change violently. COD of leachate would not be stable at a short-term, but BOD5 of leachate would be affected by the variety of pH of migratory liquid. BOD5 would be a stable situation at a short- term. At the same time, bottom ashes migrated with different extract liquid, then compare to the quantity of heavy metals through the batch TCLP test and the accumulative quantity of heavy metals of leachate. We can find out that migrated with acid liquid will not accelerate the release of heavy metals. Because of the pH in landfill layer would maintain at the range that could cause the reaction of microorganism, the biological reaction would improve the quality of leachate.
According to the results, the quantity of organic material and heavy metals in the incineration ashes were obtained. Preliminary results explore the leaching characteristics of heavy metals and organic material of the leachate from landfill. The characteristics of migration distribution and extraction potential with time also were determined by comparing with batch experiment of incineration ashes. On the one hand, such results can be used as the base to describe the pollutant accumulation in the landfill of incineration ashes. On the other hand the parameters of adsorption and desorption were obtained in laboratory can be applied to the quality model of leachate which developed by the writer. Finally, a reasonable and practical quality model of leachate can be established. The simulation results of leachate quality are approximate to the experiment data.
Two laboratory scale lysimeters that are designed to simulate the landfill of MSW combined with incineration residuals outdoors, and compared with simulation and analysis results. Recognizing that precipitation is the main source of leachate, in the study, the basic equation of precipitate through the MSW combined with incinerated residuals landfill site is based on hydrologic parameter and Horton(1940) infiltration theory, giving the assumption that migration characteristic is at the average velocity flow through the landfill zone and neglecting the variations formed by typhoons or storms. Models of landfill leachate quantity from precipitation and data about sanitary landfill site are thus obtained.
Prove by two laboratory scale lysimeters that are designed to simulate the landfill of MSW combined with incineration residuals outdoors and compared with simulation and analysis results, the variation of leachate quantity for the experimental data and simulation results are approximately and similarly deduced.
目 錄
圖目錄Ⅳ
表目錄Ⅵ
第一章 前言
1-1 緒論1
1-2 研究緣起2
1-3 研究目的與內容4
第二章 文獻回顧
2-1 都市垃圾焚化灰渣基本特性6
2-2 焚化灰渣掩埋滲出水特性9
2-3 焚化灰渣掩埋滲出水水質模式13
2-4 焚化灰渣掩埋滲出水水量模式20
第三章 研究方法與實驗設備
3-1 研究方法28
3-2 實驗設備及設計29
3-3 分析項目及方法32
第四章 實驗結果與討論
4-1 灰渣基本特性33
4-2 掩埋管柱之溫度變化35
4-3 滲出水之水量變化35
4-4 滲出水pH值之變化36
4-5 滲出水COD之變化38
4-6 滲出水BOD5之變化41
4-7 滲出水重金屬濃度之變化43
4-8 微生物生物作用之影響55
第五章 模式建立與模擬結果
5-1 模式推導58
5-2 運算流程64
5-3 參數值之探討70
5-3-1 水質模式參數70
5-3-2 水量模式參數76
5-4 模式模擬結果與討論77
5-4-1 水質模式模擬值與實測值之比較77
5-4-2 水量模式模擬值與實測值之比較82
5-4-3 水質模式模擬參數值之比較85
第六章 結論與建議
6-1 結論86
6-2 建議88
參考文獻89
圖 目 錄
圖3-1 掩埋管柱設計圖29
圖4-1 管柱溫度變化曲線35
圖4-2 滲出水量變化曲線36
圖4-3 滲出水pH值變化曲線37
圖4-4 COD釋出曲線38
圖4-5 COD累積淨釋出變化曲線40
圖4-6 BOD5釋出曲線42
圖4-7 BOD5累積淨釋出變化曲線42
圖4-8 滲出水中Zn濃度變化曲線44
圖4-9 以蒸餾水淋滲滲出水中Zn累積溶出趨勢45
圖4-10 以TCLP1淋滲滲出水中Zn累積溶出趨勢45
圖4-11 以TCLP2淋滲滲出水中Zn累積溶出趨勢46
圖4-12 滲出水中Fe濃度變化曲線47
圖4-13 以蒸餾水淋滲滲出水中Fe累積溶出趨勢48
圖4-14 以TCLP1淋滲滲出水中Fe累積溶出趨勢48
圖4-15 以TCLP2淋滲滲出水中Fe累積溶出趨勢49
圖4-16 滲出水中Cu濃度變化曲線59
圖4-17 以蒸餾水淋滲滲出水中Cu累積溶出趨勢51
圖4-18 以TCLP1淋滲滲出水中Cu累積溶出趨勢51
圖4-19 以TCLP2淋滲滲出水中Cu累積溶出趨勢52
圖4-20 滲出水中Pb濃度變化曲線53
圖4-21 以蒸餾水淋滲滲出水中Pb累積溶出趨勢54
圖4-22 以TCLP1淋滲滲出水中Pb累積溶出趨勢54
圖4-23 以TCLP2淋滲滲出水中Pb累積溶出趨勢55
圖4-24 以TCLP1淋滲液淋滲後灰渣之生物圖56
圖4-25 以TCLP2淋滲液淋滲後灰渣之生物圖56
圖5-1 k值估算程式運算流程圖68
圖5-2 水量估算模式運算流程圖69
圖5-3 以蒸餾水淋滲灰渣掩埋管柱1之COD模擬結果78
圖5-4 以蒸餾水淋滲灰渣掩埋管柱2之COD模擬結果78
圖5-5 以TCLP1萃取液淋滲灰渣掩埋管柱3之COD模擬結果79
圖5-6 以TCLP2翠取液淋滲灰渣掩埋管柱4之COD模擬結果79
圖5-7 以蒸餾水淋滲灰渣掩埋管柱1之BOD模擬結果80
圖5-8 以蒸餾水淋滲灰渣掩埋管柱2之BOD模擬結果81
圖5-9 以TCLP1萃取液淋滲灰渣掩埋管柱3之BOD模擬結果81
圖5-10 以TCLP2萃取液淋滲灰渣掩埋管柱4之BOD模擬結果82
圖5-11 大型室外掩埋模場1滲出水量模擬結果83
圖5-12 大型室外掩埋模場2滲出水量模擬結果84
表 目 錄
表2-1 焚化底灰之主要組成成分分析表6
表2-2 國外之都市垃圾焚化底灰之重金屬含量分析表8
表2-3 國內之焚化底灰之重金屬總量與TCLP溶出結果分析表8
表2-4 國內之焚化底灰之重金屬TCLP溶出試驗結果分析表9
表3-1 分析方法整理表32
表4-1 實驗底灰之基本性質34
表4-2 實驗底灰之重金屬特性34
表4-3 實驗底灰之蒸發散百分比分析表36
表4-4 各掩埋模擬管柱之COD累積釋出量40
表4-5 各掩埋模擬管柱之BOD5累積釋出量41
表4-6 各掩埋模擬管柱之Zn累積釋出量44
表4-7 各掩埋模擬管柱之Fe累積釋出量47
表4-8 各掩埋模擬管柱之Cu累積釋出量50
表4-9 各掩埋模擬管柱之Pb累積釋出量53
表5-1 水質模式代入計算之各參數值74
表5-2 水質模式模擬參數值之比較85
1.海保新太郎、吉田 豐、中山和好、成富武治、永田知子、小室芳間,“燒卻灰 埋立地浸出液 經時變化 ”,千葉衛研報告第三號 43-49,1979.
2.Brunner Paul H., and Hermann Monch, “The flux of Metals through Municipal Solid Waste Incinerators”, Waste Management & Research, No.4, pp.105-119, 1986.
3.Bridle T.R., Cote P.L., Constable T.W., Fraser J.L., “Evaluation of Heavy Metal Leachability from Solid Wastes”, Wat.Sci.Tech.Vol.19, pp.1029-1036, 1987.
4.池口 孝,“都市燒卻殘渣埋立環境影響問題(續報)1” 都市清掃,第47卷第167號,pp.592-596,昭和63年12月.
5.Francis, C. W. and G.H. White, “Leaching of Toxic Metals from Incinerator Ashes”, Journal WPCF, Vol.59, No.11, pp.979-986, 1987.
6.Roffmam Haia K., “Characterization of Municipal Waste Combustion Ashes and Leachate-Results of Two Filed Studies”, First United States Conference on Municipal Solid Waste Management Solutions for the 90s,Proceedings Volume II , June 13-16., 1990.
7.Sue-Huai Gau, and Jing-Dong Chow, “Landfill Leachate Characteristics and Modeling of Municipal Solid Waste Combined with Incinerated Residuals”, Journal of Hazardous Materials, Vol.58, No.1-3, 1998.
8.寺島 泰、內藤 茂喜,“Behavior and Prediction of Water and Pollutant in a Solid Waste Bed-as a Basis for Predicting the Leachate Quantity and Quality in a Landfill Site”,衛生工程研究論文集,25卷,1989.
9.楊芳哲,“都市垃圾焚化底灰掩埋滲出水返送之水質模式探討”,碩士論文,淡江大學水資源及環境工程研究所,1999.
10.Reimann, D. O., “Heavy Metals in Domestic Refuse and Their Distribution in Incinerator Residues”, Waste Management & Research, July, pp. 57-62, 1989.
11.Hamemik, J. D., and Frantz, G. C., “Physical and Chemical Properties of Municipal Solid Waste Fly Ash”, ACI Materials Journal, 88(3), pp.294-301, 1991.
12.Wiles, C.C. Presented before the Division of Environmental Chemistry, American Chemical Society, Washington, DC, August 1994.
13.曾豐益,“垃圾焚化飛灰及灰渣中重金屬之濃度與分佈的探討”,碩士論文,中央大學環境工程研究所,1994.
14.楊金鐘、吳裕民,“垃圾焚化灰渣穩定化產物在利用之可行性之探討”,一般廢棄物焚化灰渣資源化技術與實務研討會,pp. 43-68,1996.
15.顧順榮、鍾昀泰、張木彬,“臺灣地區都市垃圾灰份中重金屬濃度及TCLP溶出之評估”,第十屆廢棄物處理技術研討會,pp.271-279,1995.
16.李釗、江少鋒、郭文田,“垃圾焚化底灰做為水泥混凝土細骨材之可行性研究”,第十屆廢棄物處理技術研討會,pp. 122-128,1995.
17.張祖恩、蔡敏行、蔡尚林、林健榮,“臺灣地區都市垃圾焚化灰渣物化組成與溶出特性探討”,一般廢棄物焚化灰渣資源化技術與實務研討會,pp. 227-254,1996.
18.Wiles, C.C., “Municipal Solid Waste Combustion Ash: State-of-the-Knowledge”, Journal of Hazardous Materials, Vol. 47, pp.325-344, 1996.
19.N. Alba, S. Gasso, T. Lacorte and J.M. Baldasano, “Characterization of Municipal Solid Waste Incineration Residues from Facilities with Different Air Pollution Control Systems”, Journal of the Air & Waste Management Association, Vol.47, pp.1170-1179, 1997.
20.Kosson D.S., H.A. Sloot, and Eighmy, T.T., “An approach fir estimation of contaminant release during utilization and disposal of municipal waste combustion residues”, Journal of Hazardous Materials, Vol. 47, pp.43-75, 1996.
21.Clapp, T. L., J. F. Magee, R. C. Ahlert and, D. S. Kosson, “Municipal Solid Waste Composition and the Behavior of Metals in Incinerator Ashes”, Environmental Progress, Vol. 7, No. 1, pp. 22-29, 1988.
22.Ontiveros, J. L., T. L. Clapp and, D. S. Kosson, “Physical Properties and Chemical Species Distribution Within Municipal Waste Combuster Ashes”, Environmental Progress, Vol. 8, No. 3, pp. 200-208, 1989.
23.Reimann, D. O., “Heavy Metals in Domestic Refuse and Their Distribution in Incinerator Residues”, Waste Management & Research, July, pp. 57-62, 1989.
24.Bagchi, A., and Dennis, S., “Characterization of MSW Incinerator Ash”, Environmental Engineering, 115(2), pp. 447-452, 1989.
25.Walter, S., and Sterling, D., “Characterization of Municipal Waste Combustion Ash,Ash Extracts,and Leachates”, EPA 68-01-7310, 1990.
26.賴聰華,“垃圾焚化灰燼特性分析及其固化處理之探討”,碩士論文,臺灣大學環境工程研究所,pp.13-34,1990.
27.林世皇,“都市垃圾與焚化灰渣以厭氧性共同掩埋其滲出水有機物濃度之影響因子和模式的探討”,碩士論文,淡江大學水資源及環境工程研究所,pp.34-43,1991.
28.周燮君,“都市垃圾焚化灰渣滲出水中重金屬及氯鹽釋出趨勢之研究”,碩士論文,淡江大學水資源及環境工程研究所,pp. 25-31,1993.
29.廖錦聰,“從日本經驗談臺灣焚化灰渣資源化方向”,一般廢棄物焚化灰渣資源化技術與實務研討會,pp. 29-42,1996.
30.陳宗賓,“都市垃圾焚化灰渣出水特性探討”,碩士論文,臺灣大學環境工程研究所,1990.
31.Buchholz B.A., and S. Landaberger “ Trace Metal Analysis of Size-Fractioned Municipal Solid Waste Incinerator Fly Ash and its Leachate”, Journal of Environmental Science and Health, A28 (2), pp.423-441, 1993.
32.Roffman, H.K., in: Proc. Sixth Int. Conf. on Municipal Solid Waste Combustor Ash Utilization, Resource Recovery Report, Arlington, VA, 1993.
33.Straub, W. A. and, Lynch, “Models of Landfill Leachate :Organic Strength”, Journal of Environmental Engineering Division, ASCE, Vol. 108, No. EE2, pp. 251-268, 1982.
34.周錦東,“都市垃圾與焚化灰渣共同掩埋滲出水水質水量模式之研究”,博士論文,淡江大學水資源及環境工程研究所,1998.
35.Alexander, C. D., Lily S. and, E. Hardar, “Modeling Leachate Production from Municipal Landfills”, Journal of Environmental Engineering Division, ASCE, Vol. 112, No. 5, 1986.
36.周錦東,“準好氧性衛生掩埋場垃圾滲出水特性之研究”,碩士論文,淡江大學水資源及環境工程研究所,1988.
37.吳先琪、王美雪,“垃圾滲出水滲出強度之預測模式”,第二屆廢棄物處理技術研討會論文集,1988.
38.蘇國林,“穩定垃圾處理高濃度有機廢水之研究”,碩士論文,國立中央大學土木工程研究所,1989.
39.高思懷,周錦東,“都市垃圾與焚化灰渣共同掩埋之研究”,第七屆廢棄物處理技術研討會,pp.449-453,1992.
40.金谷 健,“一般廢棄物燒卻灰埋立地浸出水の水量水質預測に關すゐ研究”,博士論文,京都大學,1993。
41.柴浣蘭,周錦東,高思懷,“都市垃圾焚化灰渣衛生掩埋過程中污染物之滲出特性”,第十五屆廢棄物處理技術研討會,2000.
42.柴浣蘭,周錦東,高思懷,“都市垃圾焚化灰渣掩埋層中之吸脫附特性及滲出水水質預測模式”,第十五屆廢棄物處理技術研討會,2000.
43.張皇珍,“垃圾衛生掩埋場滲出水循環處理之研究”,碩士論文,臺灣大學環境工程研究所,1986.
44.姚宗岳,“山谷地垃圾衛生掩埋場設計”,73年近代工程技術討論會垃圾處理組,pp.61-84,1984.
45.林秋裕,“都市垃圾及土壤污染自淨能力評估之研究”,環保署,EPA-81-E3H1-09-07,1992.
46.林秋裕,“垃圾滲出水量之推估研究”,第八屆廢棄物處理技術研討會,1993.
47.Chen, C. J. and, H. C. Chen, “The Finite Analytic Method” Iowa Institute of Hydraulic Research The University of Iowa, Iowa, Iowa City, August, 1982.
48.Campbell, G. S., “A Simple Method for Determing Unsaturated Conductivity from Moisture Retention Data” Soil Science, Vol. 117, No.6, Jun. 1974.
49.Charlie, W. A., Wardwell, R. E., and Andersland, O. B., “Leachate Generation from Sludge Disposal Aera” Journal of Environmental Engineering Division, ASCE, Vol. 105, No.EE5, Oct. 1979.
50.Dass, P., Tamke, G. R., and Stoffel, C. M., “Leachate Production at Sanitary Landfill Sites” Journal of Environmental Engineering Division, ASCE, Vol. 103, No. EE6, Dec. 1977.
51.Demetracopoulos, A. C., Sehayek, L., and Erdogan, H., “Modeling Leachate Production from Municipal Landfills” Journal of Environmental Engineering Division, ASCE, Vol.112, No.5, Oct. 1986.
52.Erdogan, H., and Neufeld, R. D., “Modeling Leachates at Landfill Boundaries,” Journal of Environmental Engineering Division, ASCE, Vol.109, No.5, Oct., 1983.
53.Kelly, W. E., “Ground-Water Pollution Near a Landfill” Journal of Environmental Engineering Division, ASCE, Vol.102, No.EE6, Dec. 1976.
54.Klute, A., “a Numerical Method for Solving the Flow Equation for Water in Unsaturated Materials” Journal of Soil Science, Vol.73, 1952.
55.Korfiatis G. P., Demtracopoulos, A. C., and Nawy, E. G., “Moisture Transport in a Solid Waste Column” Journal of Environmental Engineering Division, ASCE, Vol.104, No.4, Aug. 1984.
56.Koussis, A. D., and Watson, R. W., “Ground-Water Flow Computation by Method of Lines”, Journal of Environmental Engineering Division, ASCE, Vol.106, No.IR1, Mar. 1980.
57.Philip, J. R., “The Theory of Infiltration: I, The Infiltration Equation and It Solution” Soil Science, Vol.83, 1957.
58.薛永慶,“垃圾焚化底灰掩埋滲出水返送之污染物削減特性”,碩士論文,淡江大學水資源及環境工程研究所,2000.
59.全以仁,“垃圾焚化底灰掩埋層處理滲出水能力之比較”,碩士論文,淡江大學水資源及環境工程研究所,1999.
60.陳志雄,“都市垃圾焚化底灰對灰渣滲出水返送循環處理能力之研究”,碩士論文,淡江大學水資源及環境工程研究所,1998.
61.Gau, S. H. and, W. C. Jeng, “Influence of ligands on metals leachability from landfilling bottom ashes”, Journal of Hazardous Materials, Vol. 58, pp. 59-71, 1998.
62.張道淼,“垃圾焚化灰渣掩埋對生垃圾滲出水之處理能力”,碩士論文,淡江大學水資源及環境工程研究所,1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊