跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉承霖
研究生(外文):C. L. Yueh
論文名稱:由X光吸收光譜探討以Fe當催化層奈米碳管之電子結構
論文名稱(外文):Electronic structures of the Fe-layer catalyzed carbon nanotubes studied by x-ray-absorption spectroscopy
指導教授:彭維鋒彭維鋒引用關係
指導教授(外文):Way-Faung Pong
學位類別:碩士
校院名稱:淡江大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:60
中文關鍵詞:X光吸收光譜奈米碳管
外文關鍵詞:XANESCNTcarbon nanotube
相關次數:
  • 被引用被引用:10
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要以X光吸收光譜近邊緣結構(XANES)量測方式來觀測不同管徑的奈米碳管(CNT)與鐵催化劑之間區域性電子結構的關聯。由碳的K近邊緣吸收光譜圖可知π*和σ*鍵的強度以及介面態(interlayer-state)會隨著不同奈米碳管的管徑而有所變化。此外碳K吸收峰的增加與鐵L3吸收峰的減弱表示碳的2p及鐵的3d軌域間有很明顯的混成(Hybridization),這顯示電荷由碳的2p軌域轉移到鐵的3d軌域。最後由鐵的K近邊緣吸收光譜圖獲知佔據態p軌域的減少乃源於鐵原子p、d軌域間的再混成(Rehybridization)。

X-ray absorption near edge structure (XANES) measurements have been performed to investigate the local electronic structures of the Fe catalyzed and stabilized carbon nanotubes (CNT) with various diameters. The intensities of the π*- and σ*-band and the interlayer-state features in the C K-edge XANES spectra of these CNTs vary with the diameter of the CNT. The white-line features at the C K- and Fe L3-edges suggest a strong hybridization between the C 2p and Fe 3d orbitals which lead to enhancement of the C K- and reduction of the Fe L3-edge features, respectively, indicative of a charge transfer from C 2p to Fe 3d orpitals. The Fe K-edge spectra reveal a p-d rehybridization effect that reduces p-orbital occupation at the Fe site.

目錄
I. 簡介···························7
1. 有趣的碳奈米管( CNT ) ··················8
2. 我們的研究方向····················· 12
Ⅱ. X光吸收光譜介紹···················· 13
1. X光與物質的交互作用·················· 13
2. 吸收邊緣························ 17
3. 隨著入射光能量的增加,吸收係數逐漸減少········· 20
4. X光吸收近邊緣結構(XANES) ··············· 20
5. 延伸X光吸收精細結構(EXAFS) ···············21
Ⅲ. 實驗設備與量測方法····················26
1. 光源·························· 26
2. 單色儀(monochromator) ················· 27
3. 測量方法························ 27
Ⅳ. 數據分析·························31
1. XANES··························32
2. EXAFS··························33
Ⅴ. 結果與討論························38
1. 樣品製備················· ·······38
2. 實驗概況················ ········45
a. XANES············· ···········46
b. EXAFS··············· ·········51
c. 討論·················· ······ 55
VI. 參考文獻·························57

VI. 參考文獻
1.S. Iijima, Nature 354, 56 (1991).
2.Scientific American, p38~45, December 2000.
3.W. B. Choi, D. S. Chung, J. H. Kang, H.Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999).
4.范培華, 細微碳管之原子結構, 國立清華大學物理研究所碩士論文.
5.楊任偉, 微米碳管的製備極其性質的研究, 國立清華大學化學研究所碩士論文.
6.P. M. Ajayan, and S. Iijima, Nature 361, 333 (1993).
7.B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, and O. Zhou, Chem. Phys. Lett. 307, 153 (1999).
8.P. Chen, X. Wu, J. Lin, and K. L. Tan, Science 285, 91 (1999).
9.N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
10. A.Farajian, K.Esfarjani, and Y.Kawazoe, Phys. Rev. Lett. 82, 5084 (1999).
11. X-Ray Absorption : Principles, Application, Techniques of EXAFS, SEXAFS, SEXAFS and XANES" , edited by D. C. Koningsberger, and R. Prins, Chem. Analysis Vol.92 (Wiley 1988).
12. D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett. 27, 1024 (1971).
13. "NEXAFS Spectroscopy" , edited by Joachim Stöhr(Springer-Verlag
1991).
14. "EXAFS , Basic Principle and Data Analysis" , edited by Boon K. Teo (Springer-Verlag 1986).
15. "EXAFS and Near edge Structure", edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlay 1983).
16. "安全訓練手冊", 新竹同步輻射.
17. C. S Hwang, F. Y. Lin, C. H. Lee, K. L. Yu, P. K. Tseng, J. T. Lin, H. C. Tseng, W. C. Su, J. R. Chen, T. L. Lin and W. F. Pong, Rev. Sci. Instrum. 69(3), 1230 (1998).
18. 王其武編著, X射線吸收精細結構及其應用, 科學出版社.
19. J. J. Rehr, and R. C. Albers, Phys. Rev. B 41, 8139 (1990).
20. M. de heon, J. J. Rehr, S. I. Zabinsby, and R. C. Albers, Phys. Rev. B 44, 4146 (1991).
21. J. J. Rehr, J. Mustre de Lron, S. I. Zabinsby, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).
22. A. I. Frenkel, E. A. Steren, M. Qian, and M. Newville, Phys. Rev. B 48, 12449 (1993).
23. F. G. Tarntair, L. C. Cheng, S. L. Wei, W. K. Hong, K. H. Chen, H. C. Cheng, J. Vac. Sci. Technol. B 18(3), 1207 (2000).
24. Chris Bower, Otto Zhou, Wei Zhu, D. J. Werder, and Sungho Jin, Appl. Phys. Lett. 77, 2767 (2000).
25. Masako Yudasaka, Rie Kikuchi, Yoshimasa Ohki, Etsuro Ota, and Susumu Yoshimura, Appl. Phys. Lett. 70, 1817 (1997).
26. D.Zhou, S. Seraphin, and S. Wang, Appl. phys. Lett. 65,1593 (1994).
27. T. W. Ebbesen, P. M. Ajayan, H.Hiuram, and K. Tanigaki, Nature (Londom) 367, 519 (1994).
28. L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. L. Fang, J. L. Allen, P. C. Eklund, Phys. Rev. B 60, R11309 (1999).
29. P. Krüger, A. Rakotomachevitra, J. C. Parlebas, and C. Demangeat, Phys. Rev. B 57, 5276 (1998).
30. D. M. Duffy and J. A. Blackman, Phys. Rev. B 58, 7443 (1998).
31. M. Menon, A. N. Andriotis, G. E. Froudakis, Chem. Phys. Lett. 320, 425 (2000).
32. J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 98, 631 (1992).
33. X. Blase, L. X. Benedict, E. L. Shirley, S. G. Louie, Phys. Rev. Lett. 72, 1878 (1994).
34. M. Imamura, H. Shimada, N. Matsubayashi, M. Yumura, K. Uchida, S. Oshima, Y. Kuriki, Y. Yoshimura, T. Sato, and A. Nishijima, Jap. J. Appl. Phys. 33, L1017 (1994).
35. V. P. Dravvid, X. Lin, Y. Wang, X. K, Wang, A. Yee, J. B. Ketterson, R. P. H. Chang, Science 259, 1601 (1993).
36. R. Kuzuo, M. Terauchi, M. Tanaka, and Y. Saito, Jpn. J. Appl. Phys. 33, L1316 (1994).
37. K. Yase, S. Horiuchi, M. Kyotain, M. Yumura, K. Uchida, S. Ohshima, Y. Kuriki, F. Ikazaki, N. Yamahira, Thin Solid Films 273, 222 (1996).
38. R. A. Rosenberg, P. J. Love, and R. Rehn, Phys. Rev. B 33, 4034 (1986).
39. D. A. Fisher, R. M. Wentzcovitch, R. G. Carr, A. Contineneza, and A. J. Freeman, Phys. Rev. B 44, 1427 (1991).
40. P. E. Batson, Phys. Rev. B 48,2608 (1993).
41. C. J. Pickard, Ph. D. thesis, Christ’s College, Cambridge (1997).
42. A. Laikhtman, I. Gouzman, A. Hoffman, G. Comtet, L. Hellner, and G. Dujardin, J. Appl. Phys. 86, 4192 (1999).
43. T. Hanada, Y. Okada, and K. Yase, in The Science and Technology of Carbon Nanotubes, edited by K. Tanaka, T. Yamabe, K. Fukui (Elservier, Oxford, 1999).
44. O. Stéphan, P. M. Ajayan, C. Colliex, F. Cyrot-Lackman, and É. Sandré, Phys. Rev. B 53, 13824 (1996).
45. N. Hamada, S.-I. Sawada, and A. Oshiyaman, Phys. Rev. Lett. 68, 1579 (1992).
46. W. A. Harrison, Electronic Structure and the properties of Solid (Freeman, San Francisco, 1980).
47. Ruiping Gao, Zhengwei Pan, and Zhong L. Wang, Appl. Phys. Lett. 78, 1757 (2001).
48. CRC Handbook of Chemistry and Physics, edited by D. R. Lide, 79th ed. (CRC, New York,1998).
49. H. Terrones, M. Terrones, E. Hernández, N. Grobert, J.-C. Charlier, and P. M. Ajayan, Phys. Rev. Lett. 84, 1716 (2000).
50. H. J. Choi, J. Ihm, Y. G. Yoou, and S. G. Louie, Phys. Rev. B 60, R14009 (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top