跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙承華
研究生(外文):Cheng-Hua Chao
論文名稱:旋轉金屬葉片表面裂紋之研究
論文名稱(外文):A Study of Crack Growth on a Rotating Metallic Blade
指導教授:王怡仁王怡仁引用關係
指導教授(外文):Yi-ren Wang
學位類別:碩士
校院名稱:淡江大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:82
中文關鍵詞:凹槽表面裂紋旋轉金屬葉片空氣動力
外文關鍵詞:notchsurface crackrotating metallic bladeaerodynamic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
對於所有在高速旋轉狀態下運作的機械而言,機件本身的功能及效率為初始設計時的主要考量,除此之外,機械運轉時的安全性能亦為不可輕忽的一項課題。科技發展愈趨完備。人類依賴機械的程度也愈趨頻繁,為了避免機械在運作的過程中突發性的破壞毀損,而造成使用者的傷害或是預定任務的延遲,因此,如何維持機械性能及可靠度就顯得格外重要。
本研究以直昇機旋翼葉片為例,在旋翼表面具有凹槽 (notch) 的情形之下,以高速旋轉之實驗儀器,模擬直昇機在保持懸停 (hover) 姿態時,受到空氣動力、扭力、旋轉之離心力,以及疲勞 (fatigue)破壞的多重因素影響之下,對於葉片上不同位置的裂紋 (crack) 生成與成長的情形做一歸納探討,並輔之以旋翼葉片空氣動力理論模式佐證實驗之結果,期能建立一套動態旋轉機械表面裂紋成長之資料以供後人參考。
Considerable fracture work has been done on the ductile materials for tensile loading since this mode was thought to be the most dangerous and was also the easiest to test in the laboratory. However, most structures do not experience just one type of loading but combinations of tension and shear. This situation is commonly known as mixed mode loading. The rotating machines such as compressor turbine blades, cooling fans, propellers, and helicopter rotor blades… etc., are easy to sustain such mixed loading and the fracture occur.
In this research, the mixed mode fracture of a pair of highly rotating metallic blades have been investigated at room temperature using single edge notched specimens. A set of 2-bladed rotor is driven by a 220 volt AC motor and the rotating speed is fixed as 850 rpm. The notch is located in various blade positions from blade root to tip. The correlation of notches at blade leading edge and trailing edge are also studied. A simple theoretical model of a flapping Bernoulli-Euler-Beam like rotor blade model is established for analytic study.
The experimental results show that the crack growth for the notched blade at leading edge is faster than the trailing edge notched blade. The near-root notched blade crack occurs earlier than the blade that the notch located near the tip. The cracks grow fast in the case of the rotor blade with higher angle-of-attack. In the analytic study of blade flapping motion, it is found that the aerodynamic force plays an important role in rotating machines. The aerodynamic force lifts the highly rotating blades. Due to the fact from the experimental data, it is shown that the blade flapping bending moment causes the crack occurring at the lower part of the rotating blade with angle-of-attack. It is noted that the aerodynamic force should be included in doing the rotating fracture problems.
第一章 緒論.........................................1
1.1 研究動機....................................1
1.2 文獻回顧....................................2
第二章 理論模式.....................................5
2.1 結構彈性葉片及空氣動力耦合方程..............5
第三章 實驗設計及方法..............................10
3.1 實驗儀器...................................10
3.1.1 旋轉模擬實驗機..........................10
3.1.2 高倍率光學顯微鏡........................14
3.2 實驗步驟...................................23
第四章 結果與討論..................................29
4.1 理論分析...................................29
4.2 實驗結果...................................36
4.2.1 裂紋產生時間分析比較....................36
4.2.2 裂紋產生形式分析比較....................37
第五章 結論........................................68
參考文獻...........................................71
附錄...............................................76
附錄A..............................................76
附錄B..............................................81
[1] Newman Jr., J.C., A review of chevron-notched fracture specimens. “Chevron-notched specimens, testing and stress analysis: a symposium” (ASTM STP 855), (Edited by W.W. Freiman, J.H. Underwood and F.I. Baratta) 5-31. American Society for Testing and Materials, Philadelphia, 1984.
[2] Munz, D., Bubsey, R.T. and Shannon Jr,. J.L. “Fracture toughness determination of using four-point-bend specimens with straight-through and chevron notches.” Journal of the American Ceramic Sociey 63 (5-6), 300-305, 1980.
[3] Bluhm, J.I. “A slice synthesis of a three dimensional work of fracture.” Engineering Fracture Mechanics 7, 593-604, 1975.
[4] Wu, Shang-Xian. Compliance and stress intensity factor of chevron-notched three point-bend specimen. “Chevron-notched specimens, testing and stress analysis: a symposium.” (ASTM STP 855), (Edit by W.W. Freiman, J.H. Underwood and F.I. Baratta), 176-192 American Society for Testing and Materials, Philadelphia, 1984.
[5] He, M.Y. and Evans, A.G. (1990). “Three dimensional finite element analysis of chevron-notched, three-point and four-point bend specimens.” Fracture Mechanics:Twenty- Symposium. Vol Ⅰ, Atlanta, Georgia. USA, 26-28, June 1990.
[6] Joch, J., Zemankova, J. and Kazda, J. “Analysis of a chevron-notched four-point-bend specimens by the three dimensional finite-element method.” Journal of the American Ceramic Sociey 71(3), C-154-C-155, 1988.
[7] Jenkins, M.G., Kobayashi, A.S., White, K.W. and Bradt, R.C. “A 3-D finite element analysis of a chevron-notched, three-point bend fracture specimen for ceramic materials.” International Journal of Fracture 34, 281-295, 1987.
[8] Rajendra Kolhe, Chung-Yuen Hui and Alan T. Zehnder. “Effect of finite notch width on the fracture of chevron-notched specimens.” International Journal of Fracture 94, 189-198, 1998.
[9] Griffith, A.A. The theory of rupture. “Proceeding of the First Institutional Congress of Applied Mechanics.” Delft, Biezeno and Burgers ed. Waltman, 55-63, 1925.
[10] Azhdari, A. and Nemat-Nasser, S. “Experimental and computational study of fracturing in an anisotropic brittle solid.” Mechanics of Materials 28, 247-262, 1998.
[11] Abbas Azhdari, Sia Nemat-Nasser and Jacob Rome. “Experimental observations and computational modeling of fracturing in an anisotropic brittle crystal (Sapphire).” International Journal of Fracture 94, 251-266, 1998.
[12] Pang, H.L.J. and Leggat, R.H. “Two-dimensional test case in linear elastic fracture mechanics.” Report R0020. National Agency for Finite Element Method and standards, Glasgow, U.K., 1990.
[13] Sakata, M., Aoki, S., Kishimoto, K., and Takagi, R. “Distribution of crack extension force, the J-integral, along a through-crack-front of a plane.” International Journal of Fracture 23, 187-200, 1983.
[14] Schmitt, W. and Siegete, D. “Application of finite-element method to fracture problems.” International Journal of Computer Applications in Technology 5, 118-126, 1992.
[15] Shih, C.F., Moran, B. and Nakamura, T. “Energy release rate along a three-dimensional crack front in a thermally stressed body.” International Journal of Fracture 30, 79-102, 1986.
[16] Sinclair, G.B. “Asymptotic singular eigenfunctions for the three-dimensional crack.” Proceeding of the Seventh Canadian Congress of Applied Mechanics, Sherbrooke, Quebec, 295-296, 1979.
[17] J.R. Rice and G.C. Sih, “Plane problem of crack in dissimilar media.” J. Appl. Mech, pp. 418-423, June 1965.
[18] F. Erdogan and K. Arin, “A Sandwich plane with a part-through and a deboneding crack.” Engng Fracture Mech, Vol.4, pp. 449-458, 1972.
[19] S.S. Wang and I. Choi, “The interface crack behavior in dissimilar anisotropic composites under mixed-mode loading.” J. Appl. Mech, Vol.50, pp. 179-183, March 1983.
[20] S.S. Wang and I. Choi, “The interface crack between dissimilar anisotropic composites.” J. Appl. Mech, Vol.50, pp. 169-178, March 1983.
[21] J.R. Yeh, “Fracture mechanics of delamination in ARALL laminates.” Engng Fracture Mech, Vol.30, No. 6, pp. 827-837, 1988.
[22] S.S. Wang, “An analysis of delamination in angle-ply fiber-reinforced composites.” J. Appl. Mech, Vol.47, pp. 64-70, March 1980.
[23] Chyanbin Hwu, C.J. Kao and L.E. Chang, “Delamination fracture criteria for composite laminates.” J. Composite materials, Vol. 29, No. 15, pp. 1963-1987, 1995.
[24] G.P. Nikishkov and S.N. Atluri, “Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack.” By the ‘equivalent domain integral’ method, Int. J. Number. Methods Eng. Vol.24, pp. 1801-1802, 1987.
[25] He, C. J., “Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors,” Ph. D. Thesis, School of Aerospace Engineering, Georgia Institute of Technology, July, 1989.
[26] Wang, Y.-R., “The Effect of Wake Dynamics on Rotor Eigenvalues in Forward Flight,” Ph. D. Thesis, School of Aerospace Engineering, Georgia Institute of Technology, May, 1992.
[27] According to class note.
[28] Karunamoorthy, S., and Peters, D. A., “Use of Hierarchical Elastic Blade Equation and Automatic Trim for Rotor Response,” Vertica, Vol. 11, pp.233-248, 1987.
[29] Abrmowity, M., and Stegun, I., A., “Handbook of Mathematical Tables.” Dover Pub., 1965.
[30] Jackson, D., “Fourier Series and Orthogonal Polynomials. ”The Garus Mathematical Monographs, No.6,” The Mathematical Association of America, 1941.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 田秀蘭(民83b):Farmer的女性生涯動機理論。諮商與輔導,101,6-9。
2. 田秀蘭(民83a):Astin的女性生涯選擇「社會心理模式」。諮商與輔導,100,6-8頁。
3. 田秀蘭(民85a):女性生涯發展之主要型態。諮商與輔導,127,33-35。
4. 田秀蘭(民85b)。自我效能預期與女性之生涯發展。諮商與輔導,123,32~33。
5. 田秀蘭(民88)。男女大學生生涯阻礙因素之分析研究。教育心理學報, 30(1),133- 148。
6. 李坤崇(民84)。教師因應策略量表之編製報告。中國測驗學會測驗年刊,42,245~264。
7. 呂玉瑕(民71):現代婦女之角色態度的價值延伸現象。思與言,20(2), 135-142。
8. 金樹人(民81)。生涯輔導在教育組織內的應用。教師天地,57,19~29。
9. 林宜貞(民83)。高雄市國小教師生涯發展研究。高市鐸聲,4(2),48~50。
10. 郭鴻儀(民86)。女性生涯發展之重要性及其影響因素。中國勞工,966,14~16 。
11. 曾雅玲(民86)。護理界也需要兩性平等教育-談如何避免性別角色刻板印象對男護生之影響。護理雜誌,44(3),56-60。
12. 楊妙芬(民86)。國小教師工作價值觀、工作滿意度、任期職志與其相關因素之研究。屏東師院學報,10,97~132。
13. 劉明秋(民80)。教師生涯發展及其影響因素分析。諮商與輔導,70,43~45。
14. 嚴祥鸞(民86)。鑲嵌在招募廣告中的性別歧視。社區發展季刊,79,109-119頁。
15. 柯華葳、李俊仁(民85a)。初學識字成人語音覺識與閱讀能力的關係。國立中正大學學報社會科學分冊,7(14),29-47。