(18.210.12.229) 您好!臺灣時間:2021/02/26 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃駿逸
研究生(外文):Huang Chun Yi
論文名稱:時間數列模型對股價指數報酬率預測之能力之評估
論文名稱(外文):The Predictable Ability of Stock Index Return be Evaluated by Time Series Model
指導教授:邱建良邱建良引用關係
指導教授(外文):Jiann-Liang Chiu
學位類別:碩士
校院名稱:淡江大學
系所名稱:財務金融學系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:115
中文關鍵詞:時間序列模型向量自我迴歸模型一般化自我迴歸條件異質變異模型誤差修正模型卡爾慢率波模型馬可夫轉換模型
外文關鍵詞:time series modelVAREGARCHECMKalman FilterMarkov Switch
相關次數:
  • 被引用被引用:20
  • 點閱點閱:354
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:5
論文提要內容:本文將應用五種不同各具代表性的時序模型:向量自我迴歸模型(VAR)、誤差修正模型(ECM)、一般自我迴歸條件異質非對稱變異數模型(EGARCH)、卡爾曼濾嘴模型(KMF)以及馬可夫狀態轉換模型(MKS),分別就美國、英國、德國與日本等四個工業大國的股價指數作跨市場不同預測模型的交叉績效比較。
在本文研究的實證結果中可得知:在德國市場預測方面,馬可夫轉換模型在短期間內能較其餘時序模型準確的捕捉到股價報酬率的脈動,而在長期的水準下,ECM模型有相對較優異的表現。在英國市場上,在前兩個月較短期的預測水平中,線性模型似乎能有效的掌握指數報酬率短期的波動方向。而在之後較長期的預測水平中,非線性模型往往都有較佳的表現。另外其整體橫斷面的平均績效水準則以卡爾曼模型較佳。在日本市場中,短期預測水平中的最佳模型都擁有模型誤差變異非一致性或非對稱性的假設,而在長期預測水平下的最佳模型,其都相繼包含了模型動態調整的特性,另外其整體橫斷面的平均績效水準則以ECM模型較佳。最後在美國市場預測方面產生了較明顯不同的績效衡量結果,,MAD法中認定以聯立式向量自我迴歸方法所架構出模型方程式能比其他單一迴歸式的非線性模型有較佳的表現。在RMSE法中則認為市場裡長短期股性的趨勢又朝向大部分由:含有模型動態調整特性的預測方法會有較佳的預測結果,另外其整體橫斷面的平均績效水準則以EGARCH模型較佳。對於EGARCH模型未能有較為優異的預測績效,其可能原因為受到樣本數大小的影響及無法像股價報酬率波動幅度較明顯之日資料那樣擁有較強烈的資料特性所致。
Abstract:
Many empirical studies and researches believe that he overall performance of a country’s economy is strongly related to the performance of its stock market. Some empirical studies, however, show that this relationship does not necessarily hold. In other word, sometimes the stock index is viewed as random walk process. Hence, in this research we want to know that whether the stock index is predictable or not? In this research we applied five time series models to investigate on forecasting of the stock index return in American、British、German、Japanese capital markets. The analysis techniques are distinguished in two parts, which are known as the simultaneous equation model and nonlinear unique equation models. Models of the first parts compose of Vector Autoregressive Models (VAR) and Error Correction Models (ECM). The second part of the models are EGARCH、Kalman Filter Model (KFM) and Markov Switch Models (MKS) which are used to account for time-varying structure parameters and conditional variances. The forecasting performance is measure and compared with MAD and RMSE. Hence, in this research we will compare these five models and determine which of these models make the most accurate prediction.
The conclusions are shown as the following: 1) In the short-term, the MKS model capture a better rate of return on the German stock price prediction. Conversely, in the long-term market performance, the ECM model possesses a better result. 2) In the British market performance, one can see that linear equation models perform better in forecasting in the first two months. Nevertheless, nonlinear unique equations tend to carry out an excellent prediction in a long-term. The overall market performance is best forecasted by using the KFM model. 3) In the short-term Japanese market performance, the better predictable model almost have the same character about having asymmetry variance assumption. Then ECM best model for the overall performance prediction. Lastly, in the US market forecast, it is noteworthy that different forecasting models generate different effects. However, EGARCH is the best-chosen model use for market performance prediction.
目錄
第一章緒論…………………………………………………………………………1
第一節研究背景與動機……………………………………………….…….1
第二節研究目的……………………………………………..………………2
第三節研究架構………………………………………………………………5
第二章文獻探討與變數選取………………………………………………..…..7
第一節國內外文獻回顧…………………………………..………………..7
第二節總體經濟變數的選取與介紹……………………………………….16
第三章 研究方法與資料處理…………………………………………..……….23
第一節單根檢定……………………………….……….………………….23
第二節向量自我迴歸模型…………………………….……….…………..27
第三節誤差修正模型……………………………………………………….29
第四節一般化自我迴歸條件異質變異數模型……………………………..32
第五節狀態空間模型之卡爾曼濾嘴模型………………………………….37
第六節多重狀態馬可夫轉換模型的定義…………………………………..44
第七節資料來源與處理…………………………………………………….48
第八節評量預測模型能力方法……………………………………………..51
第四章 實證結果…………………………………………….……………………53
第一節單根檢定………………………………………………….…………53
第二節風險變數的取捨……………………………………………….……59
第三節最適落差期選取……………….……………………………………62
第四節向量自我迴歸模型實證研究………………………………….……64
第五節誤差修正模型實證研究……………………………………………..68
第六節EGARCH模型實證研究……………………………………………….73
第七節卡爾曼濾嘴模型實證研究………………………………………….77
第八節馬可夫轉換模型實證研究…………………………………………..82
第九節股價指數預測模型的績效分析與圖形結果………………………..91
第五章結論…………………………………………………………………108
第一節研究結論…………………… ……………..………..…….……108
第二節後續研究與建議……………… ………………………………….110
參考書目……………………………………………………………………………111
參考文獻
中文部分:
1、陳江明 , 「 臺灣股票市場報酬率之預測模型:平均數復歸行為之應用 」 , 國立中央大學財務管理研究所 , 民國八十四年 。
2、沈中華 , 「 台灣遠期美元外匯市場效率性之再檢定―兩狀態Markov模型的應用 」 , 經濟論文 , 頁87-115 , 民國八十二年 。
3、王治平 , 「 以頻譜帶濾波方法結合向量自我迴歸迴模型分析台灣股市報酬與總體經濟因素之動態因果關聯 」 , 私立中原大學企業管理研究所 , 民國八十七年 。
4、林向愷、黃裕烈與管中閔 , 「 景氣循環轉折點認定與經濟成長率預測 」 ,
經濟論文從刊 , 頁431-457 , 民國八十七年 。
5、王志中 , 「 以總體經濟指標預測臺灣股票報酬 」 , 國立台灣科技大學 , 管理研究所 , 民國八十七年 。
6、曾繁仁 , 「 臺灣股票報酬行為分析--應用 Markov Switching 模型 」 , 私立淡江大學產業經濟研究所 , 民國八十七年 。
7、邱柏霖 , 「 臺灣股價之預測 」 , 私立淡江大學財務金融研究所 , 民國八十六年 。
8、莊雅雯 , 「 台美股價預測模型之評估 」 , 私立淡江大學管理科學研究所 , 民國八十八年 。
9、黎明淵 , 「 馬可夫轉換模型應用性與合用性探討 」 , 國立政治大學國際貿易研究所博士班論文 , 民國八十八年 。
英文部分:
1.Bollerslev, Tim (1986) ; “Generalized Autoregressive Conditional Heteroskedasticity” Journal of Econometrics ; Vol. 31 ; pg. 307-327
2.Canova, Fabio ; De Nicolo, Gianni (1995) ; “Stock returns and real activity: A structural approach” ; European Economic Review ; Vol. 39 ; pg. 981-1015
3.Canova, Necolon ; Jongmoo Jay Choi (1999) ; “Does the stock market predict real activity? Time series evidence from the G-7 countries” ; Journal of Banking & Finance ; Vol. 23 ; pg. 1771
4.Chen, Nai-Fu ; Roll ; Ross (1986) ; ”Economic Forces and the Stock Market” ; The Journal of Business ; Vol. 59 ; pg. 383-403
5.Cheung, Yin-Wong ; Diebold, Francis (1994) ; “On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean” ; Journal of Econometrics, Amsterdam ; Vol. 62 ; pg. 301-316
6.Christie, Andrew A. (1982) ; “The Stochastic Behavior of Common Stock Variances: Value, Leverage and Interest Rate Effects” ; Journal of Financial Economics ; Vol. 10 ; pg. 407-432
7.Cochran, Steven ; DeFina, Robert H ; Mills, Leonard (1993) ; “International evidence on the predictability of stock returns” ; The Financial Review ; Vol. 28 ; pg. 159-180
8.Cornell, Bradford ; French, Kenneth (1983) ; “Taxes and Pricing of Stock Index Futures” ; The Journal of Finance ; Vol. 38 ; pg. 675-694
9.Dufour, Jean-Marie ; Ghysels, Eric ; Hall, Alastair (1994) ; “Generalized predictive tests and structural change analysis” ; International Economic Review ; Vol. 35 ; pg. 199-229
10.Engle, R. F.; Granger, C. W. J.; Hallman, J. J. (1989) ; “Merging Short- and Long Run Forecasts: An Application of Seasonal Cointegration to Monthly Electricity Sales Forecasting” ; Journal of Econometrics ; Vol. 40 ; pg. 45-62
11.Fama (1970) ; “Efficient Capital Markets: A Review of Theory and Empirical Work” ; Journal of Finance ; Vol. 25 ; pg. 383-417
12.Fama (1990) ; “Term-Structure Forecasts of Interest Rates, Inflation, and Real Returns” ; Journal of Monetary Economics ; Vol. 25 ; pg. 59-76
13.Fama ; French (1988) ; ”Dividend Yields and Expected Stock Returns” ; Journal of Financial Economics ; Vol. 22 ; pg. 3-25
14.Fama, Eugene F. (1981) ; “Stock Returns, Real Activity, Inflation, and Money” ; The American Economic Review ; Vol. 71 ; pg. 545-565
15.French ; Ruback ; Schwert, G. (1983) ; “Effects of Nominal Contracting on Stock Returns” ; The Journal of Political Economy Vol. 91 ; pg. 70-96
16.Geske, Robert ; Roll (1983) ; “The Fiscal and Monetary Linkage Between Stock Returns and Inflation” ; The Journal of Finance ; Vol. 38 ; pg. 1-33
17.Goodwin, Thomas H ; Sweeney, Richard J (1993) ; “International evidence on Friedman''s theory of the business cycle” ; Economic Inquiry ; Vol. 31 ; pg. 178-193
18.Hamilton J. D. (1989) ; “A new approach to the economic analysis of nonstationary time series and the business cycle” ; Econometrica, 57, pg. 357-384.
19.Hamilton, J. D. (1990) ; ”Analysis of the time series subject to change in regime” ; Journal of Econometrics ; 45, pg. 39-70.
20.Hamilton, J. D. (1994) ; ”Time series analysis” ; Princeton University Press, Princeton, NJ
21.Hamilton, J. D. and G. Lin , (1996) ;「Stock market and the business cycle」Journal of Applied Econometrics ; 11, pg. 573-593
22.Hamilton, James D. (1988) ; “Rational-Expectations Econometric Analysis of Changes in Regime: An Investigation of the Term Structure of Interest Rates” ; Journal Of Economic Dynamics & Control ; Vol. 12 ; pg. 385-423
23.Harvey, Andrew ; Ruiz, Esther ; Shephard, Neil (1994) ; “Multivariate stochastic variance models” ; The Review of Economic Studies ; Vol. 61 ; pg. 24
24.Kaul, Gautam (1987) ; “Stock Returns and Inflation: The Role of the Monetary Sector” ; Journal of Financial Economics ; Vol. 18 ; pg. 253-276
25.Koutoulas, George and Kryzanowski (1994) ; “Integration or segmentation of the Canadian stock market: Evidence based on the APT” ; The Canadian Journal of Economics ; Vol. 27 ; pg. 329-351
26.Kydland, Finn E. (1984) ; “Labor-Force Heterogeneity and the Business Cycle” ; Carnegie - Rochester Conference Series on Public Policy ; Vol. 21; pg. 173-208
27.Loflund, Anders (1997) ; “On stocks, bonds and business conditions” ; Applied Financial Economics ; Vol. 7 ; pg. 137-136
28.Long, John B. ; Plosser, Charles I (1983) ; “Real Business Cycles” ; The Journal of Political Economy ; Vol. 91 ; pg. 39-69
29.Martin Krolzig, (1997) ; “Econometric Modelling of Markov-Switching Vector Autoregressions” ; Institute of Economics and Statistics and Nuffield College, Oxford.
30.Mishkin, Frederic S. (1991) ; “A Multi-Country Study of the Information in the Shorter Maturity Term Structure About Future Inflation” ; Journal of International Money and Finance ; Vol. 10 ; pg. 2-22
31.Moore, James E II ; Kalaba, Robert ; Kim, Moon ; Park, Hyeon (1994) ; “Time series and turning point forecasts: A comparison of associative memories and Bayesian econometric techniques applied to LeSage''s data “ ; Journal of Regional Science ; Vol. 34 ; pg. 1-25
32.Myung Jig Kim ; Nelson, Charles R ; Startz, Richard (1991) ; “Mean Reversion in Stock Prices? A Reappraisal of the Empirical Evidence” ; The Review of Economic Studies ; Vol. 58 ; pg. 515
33.Najand, Mohammad (1991) ; “A Test of the Risk Premium Hypothesis” ; The Journal of Financial Research ; Vol. 14 ; pg. 207
34.Nelson, Charles R. ; Plosser, Charles I. (1982) ; “Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications” ; Journal of Monetary Economics ; Vol. 10 ; pg. 139-162
35.Nelson, Daniel B. (1991) ; “Conditional Heteroskedasticity in Asset Returns: A New Approach” ; Econometrica ; Vol. 59 ; pg. 347-370
36.Nelson, Daniel B. (1991) ; ”Conditional Heteroskedasticity in Asset Returns: A New Approach” ; Econometrica ; Vol. 59 ; pg. 347-370
37.Richard and Mbodja (1996) ; “「On the dynamic relation between stock prices and exchange rates” ; The Journal of Financial Research ; Vol. 19 ; pg.193-208
38.Schaller, Huntley (1997) ; “Regime switching in stock market returns” ; Applied Financial Economics ; Vol. 7 ; pg. 177-191
39.Solnik, Bruno (1984) ; ”Stock Prices and Monetary Variables: The International Evidence” ; Financial Analysts Journal ; Vol. 40 ; pg. 69-73
40.Turner, Christopher M. ; Startz, Richard ; Nelson, Charles R. (1989) ; “A Markov Model of Heteroskedasticity, Risk, and Learning in the Stock Market” ; Journal of Financial Economics ; Vol. 25 ; pg. 3-22
41.Willem Thorbecke (1997) ; “On stock market returns and monetary policy” ; The Journal of Finance ; Vol. 52 ; pg. 635-654
42.Willem Thorbecke (1997) ; “On stock market returns and monetary policy” ; The Journal of Finance ; Vol. 52 ; pg. 635-654
43.Zakoian, Jean-Michel (1994) ; “Threshold heteroskedastic models” ; Journal Of Economic Dynamics & Control ; Vol. 18 ; pg. 931-955
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔