跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/04 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林君黛
研究生(外文):Chun-Tai Lin
論文名稱:國際股市之緩長記憶
論文名稱(外文):Long Memory in International Stock Markets
指導教授:邱建良邱建良引用關係陳玉瓏陳玉瓏引用關係
指導教授(外文):Chien-Liang ChiuYu-Lung Chen
學位類別:碩士
校院名稱:淡江大學
系所名稱:財務金融學系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:68
中文關鍵詞:緩長記憶自我迴歸整合移動平均模型一般化自我迴歸條件異質變異數模型部分差分自我迴歸移動平均模型股票市場
外文關鍵詞:long memoryARIMAGARCHARFIMAstock market
相關次數:
  • 被引用被引用:12
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
在現今的金融市場中,股票市場占有舉足輕重的地位,若是股票市場中具有長記憶性,則會影響投資組合決策中投資標的的選擇及投資期間的長短,因此,本文選擇了美國、法國、德國及日本等已開發國家以及台灣、香港、南韓、馬來西亞以及新加坡等開發中國家為研究對象,探討其股票市場是否存在長記憶性。
在本研究中,將以ARFIMA模型中的參數d來捕捉股票市場中的長記憶特性,再加以比較ARIMA、GARCH及ARFIMA三個模型做樣本外預測所得到的預測誤差,以判斷各模型估計後之狀況。而經由實證結果發現,美國、法國、德國、日本南韓及新加坡等六個國家,其股票市場符合部份差分模型,即具有長記憶性;至於台灣、香港及馬來西亞之股票市場則不具有緩長記憶。而利用ARFIMA模型做樣本外預測所得到的預測誤差與ARIMA、GARCH模型的預測誤差相比較發現,彼此之間的差異並不大,甚至有些國家以ARFIMA之預測誤差為最小,表示ARFIMA模型能夠有效地描述這些國家股票市場中的報酬行為。
A major issue in financial economics is the behavior of stock returns over long as opposed to short horizons. This study provides empirical evidence from the perspective of long memory analysis. The ARFIMA model is employed here to capture long memory in the stock market. Tests are made on the nine countries: the USA, France, Germany, and Japan, the major capital markets, and Taiwan, Hong Kong, South Korea, Malaysia, and Singapore, the emerging capital markets. The result reveals that that there are long memory in the USA, France, Germany, Japan, South Korea and Singapore. We find no evidence of long memory in Taiwan, Hong Kong and Malaysia. The findings suggest that in the sample period, the markets with long memory do not have market efficiency, and the markets which have no long memory are efficient markets.
第一章 緒論
第一節 研究動機……………………………………………1
第二節 研究目的……………………………………………1
第三節 研究架構……………………………………………2
第二章 文獻回顧………………………………………………3
第三章 研究方法
第一節 單根檢定……………………………………………7
第二節 ARIMA(p,d,q) 模型………………………………12
第三節 異質變異數時間序列模型 ………………………13
一、自我迴歸條件異質變異數模型……………………14
二、一般化自我迴歸條件異質變異數模型……………16
三、ARCH效果的檢定……………………………………17
第四節 ARFIMA(p,d,q)模型………………………………20
一、模型介紹……………………………………………20
二、模型參數的估計及計算……………………………23
三、預測…………………………………………………30
第四章 實證結果與分析
第一節 資料來源與處理 …………………………………31
第二節 單根檢定 …………………………………………34
第三節 ARIMA模型實證結果………………………………39
一、模型之配適…………………………………………39
二、模型之選取…………………………………………44
第四節 GARCH模型實證結果………………………………46
一、ARCH效果之檢定……………………………………46
二、模型之估計…………………………………………47
第五節 ARFIMA模型實證結果 ……………………………50
一、長記憶的Robust檢定………………………………50
二、模型之配適…………………………………………52
三、模型之選取…………………………………………57
第六節 預測績效衡量 ……………………………………58
第五章 結論與建議
第一節 結論 ………………………………………………61
第二節 後續研究建議 ……………………………………63
參考文獻………………………………………………………64
一、 中文部分
洪茂蔚、鍾經樊及李丹,美元對台幣匯率的緩長記憶,管理學報,第15卷
第3期,民國87年9月,455-472。
姜麗貞,實質匯率定態性質之研究,淡江大學國際企業研究所未出版碩士
論文,民國88年6月。
陳慧玫,台灣股票市場報酬率之緩長記憶─ARFIMA-GARCH模型,台北商專
學報,第50期,民國87年6月,51-64。
二、英文部分
An, S. and P. Bloomfield (1993), Cox and Reid’s modification
in regression models with correlated errors. Discussion
Paper, Department of Statistics, North Carolina State
University, Raleigh, NC 27695-8203, U.S.A.
Barkoulas, J. T. and C. F. Baum (1996). Long-term dependence in
stock returns. Economics Letters 53, 253-259.
Barkoulas, J. T., C. F. Baum., and N. Travlos (2000). Long
memory in the Greek stock market. Applied Financial Economics
10, 177-184.
Barkoulas, J. T., W. C. Labys., and J. I. Onochie (1999). Long
Memory In Futures Prices. The Financial Review 34, 91-100.
Beran, J. (1994). Statistics for Long-Memory Process. London:
Chapman and Hall.
Beran, J. (1995). Maximum likelihood estimation of the
differencing parameter for invertible short and long memory
autoregressive integrated moving average models. Journal of
the Royal Statistical Society 57, 659-672.
Beveridge, S. and C. Oickle (1997). Estimating fractionally
integrated time series models. Economics Letters 43, 137-142.
Brockwell, P. J. and R. A. Davis (1993). Time Series: Theory
and Methods (2nd ed.). USA: Springer-Verlag, New-York.
Chan, N. H. and W. Palma (1998). State space modeling of long-
memory processes. Annals of Statistics 26, 719-740.
Chan, N. H. and N. Terrin (1995). Inference for unstable long-
memory processes with applications to fractional unit root
regressions. The Annals of Statistics 23, 1662-1683.
Chang, M. C. and D. A. Dickey (1994). Recognizing
overdifferenced time series. Journal of Time Series Analysis
15, 1-18.
Cheung, Y. W. and K. S. Lai (1995). A search for long memory in
international stock market returns. Journal of International
Money and Finance 14(4), 597-615.
Chung, C. F. and R. T. Baillie (1993). Small sample bias in
conditional sum-of-squares estimators of fractionally
integrated ARMA models. Empirical Economics 18, 791-806.
Cox, D. R. and N. Reid (1993). A note on the calculation of
adjusted profile likelihood. Journal of the Royal Statistical
Society, Series B 49, 467-471.
Dahlhaus, R. (1989). Efficient parameter estimation for self-
similar processes. The Annals of Statistics 17, 1749-1766.
Dahlhaus, R. (1995). Efficient location and regression
estimation for long range dependent regression models. The
Annals of Statistics 23, 1029-1047.
Doornik, J. A. and M. Ooms (1999). A package for estimating,
forecasting and simulating ARFIMA models: Arfima package 1.0
for Ox. Discussion Paper, Nuffield College,Oxford.
Engle, R. F. and C. W. J. Granger (1987). Cointegration and
error correction: representation, estimation and testing.
Econometrics 55, 251-276.
Engle, R. (1982). Autoregressive conditional heteroskedasticity
with estimates of the variance of United Kingdom inflation.
Econometrica 50, 987-1008.
Geweke, J. and S. Porter-Hudak (1983). The estimation and
application of long memory time series models. Journal of
Time Series Analysis 4, 221-238.
Gil-Alana, L. A. and P. M. Robinson (1997). Testing of unit
root and other nonstationary hypotheses in macroeconomic time
series. Journal of Econometrics 80, 241-268.
Golub, G. H. and C. F. Van Loan (1989). Matrix Computations.
Baltimore: The Johns Hopkins University Press.
Granger, C. W. J. (1986). Developments in study of cointegrated
economic variables. Oxford Bulletin of Economics and
Statistics 48, 213-228.
Granger, C. W. J. and P. Newbold (1974). Superious Regressions
in Econometrics. Journal of Econometrics 12, 111-120.
Granger, C. W. J. and R. Joyeux (1980). An introduction to long-
memory time series models and fractional differencing.
Journal of Time Series Analysis 1, 15-29.
Grau-Carles, P. (2000). Empirical evidence of long-range
correlations in stock returns. Physica A 287, 396-404.
Harvey, A. C. (1993). Time Series Models, second edition. New
York London: Harvet Wheatsheaf.
Hauser, M. A. (1999). Maximum likelihood estimators for ARMA
and ARFIMA models: A Monte Carlo study. Journal of Statistics
Planning and Inference 80, 229-255.
Hosking, J. R. M. (1981). Fractional differencing. Biometrika
68, 165-176.
Jeganathan, P. (1999). On asymptotic inference in cointegrated
time series with fractionally integrated errors. Econometric
Theory 15, 583-621.
Koong, C. S.,A. K. Tsui., and W. S. Chan (1997).On tests for
long memory in Pacific Basin stock returns. Mathematics and
Computers in Simulation 43, 445-449
Laskar, M. R. and M. L. King (1998). Modified likelihoodand
related methods for handling nuisance parameters in the
linear regression model. Discussion Paper 5/98, Department of
Econometric and Business Statistics, Monash University,
Clayton, Victoria 3168, Australia.
Ling, S. and W. K. Li (1999). Asymptotic inference for
nonstationary fractionally integrated autoregressive moving-
average models. Discussion Paper, Department of Economics,
University of Western Australia.
Lo, A. W. (1991). Long-term memory in stock market prices.
Econometrica 59(5), 1279-1313.
Mandelbort, B. B. (1972). A statistical methodology for non-
periodic cycles: from the covariance to R/S analysis. Annals
of Economic and Social Measurement 1, 259-290.
Mandelbort, B. B. (1975). Limit theorems on the self-normalized
range for weakly and strongly dependent processes.
Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 271-285.
Odaki, M. (1993). On the invertibility of fractionally
differenced ARIMA processes. Biometrika 80, 703-709.
Ooms, M., and J. Doornik (1999). Inference and Forecasting for
Fractional Autoregressive Integrated Moving Average Models,
with an application to US and UK inflation. Econometric
Institutu Report 9947/A.
Pai, J. S. and N. Ravishanker (1996). Exact likelihoodand
function forms for an ARFIMA process. In Data Analysis and
Information Systems, Statistical and Conceptual Approaches. Proceedings of the 19th Annual Conference of the Gesellschaft
für Klassifikation e. V., University of Basel, March 8-10,
1995., pp.323-331. Springer Verlag, Berlin.
Ravishanker, N. and B. K. Ray (1997). Bayesian analysis of
vector ARFIMA processes. Australian Journal of Statistics 39,
295-312.
Said, S. and D. Dickey (1984). Testing for Unit Roots in
Autoregressive Moving Average Models of Unknown Order.
Biometrica 71, 599-607.
Smith Jr, A. A., F. Sowell, and S. E. Zin (1997). Fractional
integration with drift: Estimation in small samples.
Emporocal Economics 22, 103-116.
Sowell, F. (1992). Maximum likelihood estimation of stationary
univariate fractionally integrated time series models.
Journal of Econometrics 53, 165-188.
Tunnicliffe-Wilson, G. (1989). On the use of marginal
likelihood in time series model estimation. J. Royal
Statistical Society B 51, 15-27.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top