(3.235.11.178) 您好!臺灣時間:2021/03/07 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱怡芳
研究生(外文):Yi-Fang Chiu
論文名稱:應用於即時影像與視訊系統之高效能二維正反離散餘弦轉換架構設計與晶片實現
論文名稱(外文):A High-Throughput Two-Dimension DCT/IDCT Architecturefor Real-Time Image and Video System and the VLSI Design
指導教授:江正雄江正雄引用關係
指導教授(外文):Jen-Shiun Chiang
學位類別:碩士
校院名稱:淡江大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:72
中文關鍵詞:正反離散餘弦轉換智慧元件超大型積體電路即時行列分解數位編解碼視訊系統
外文關鍵詞:Discrete/Inverse Discrete Cosine Transform (DCT/IDCT)Intellectual Property (IP)VLSIReal-TimeRow-Column DecompositionDigital Video Codec System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:277
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
離散餘弦轉換(DCT)及其反轉換(IDCT)已經被廣泛的運用在許多低位元率的視訊壓縮系統上,而且是許多國際標準的核心部份(如JPEG , MPEG-X , H.26X , …)。在高畫質數位電視及高取樣速率的應用中,高效能的離散餘弦轉換處理器對高品質的多媒體通訊是十分重要的。然而處理離散餘弦轉換所需的計算量非常龐大,所以要得到有效率的二維離散餘弦轉換,我們必須設計出有效率的超大型積體電路(VLSI)晶片來滿足特定影像處理應用技術的即時(real time)需求。本論文提出一個適用於即時影像與視訊系統的高效能二維正反離散餘弦轉換架構,而且以智慧元件(Intellectual property)的觀點,實現此架構於超大型積體電路,以便適用於更多的數位影像編解碼系統上。
本論文從行列分解 (row-column decomposition)的理論架構上加以改良,發展出新的理論架構。由於傳統DCT/IDCT均以乘法器來完成乘法運算,在此我們將採取查表方式取代常係數乘法器,以加快運算速度及節省晶片面積,利用重疊行列運算方式來取代傳統架構所需的矩陣轉置,以及管線式的結構有效地降低整體的計算時間,並達到高推送率的效能。此外,以智慧元件(Intellectual property)的考量,在不同的設計層次加以分析改善,完成整體架構的實現。
在TSMC 0.35um 1P4M製程技術之下,我們使用Compass高性能的標準元件製作此架構,此架構使用了119181個電晶體,晶片面積為4278.4um ´ 4278.4um。而模擬結果顯示本架構之晶片時脈速度可達100MHz,這意味了本架構不但可以應用於許多數位編解碼視訊系統,而且也達到即時(real time)編解碼的要求。
Discrete cosine transform (DCT) has been widely used in the implementation of low bit rate codecs for video compression and becomes an integral part of several international standards (such as JPEG, MPEG-X, H.26X, …). Since DCT takes lots of intensive computations, therefore, it is necessary to realize a cost-effective high speed DCT for video coding in VLSI chip.
In this thesis, we propose a high throughput 2-D DCT/IDCT VLSI architecture for a real-time digital video codec system. Further,we propose to design and implement this DCT/IDCT to an intellectual property (IP) for the digital image data compressing. Besides, a new DCT/IDCT algorithm is developed by using row-column decomposition. We adapt (1) a table look-up method for multiplication can reduce hardware and increase the speed. (2) With a high throughput rate pipelined architecture and (3) row-column overlapped technique is used for this DCT/IDCT. Moreover, IP characteristic is considered in the arithmetic operation of this DCT/IDCT.
Based on TSMC 0.35um 1P4M process parameters, COMPASS, a high performance cell library is for implementation of the proposed architecture. It integrates 119,181 transistors in a 4378.4um ´ 4378.4um chip area. Simulation results show the proposed architecture can work well with 100MHz which meets the requirement of many real-time digital video codec systems.
第一章緒論
1.1以DCT為基礎的視訊壓縮技術…………………………………1
1.2研究動機……………………………………………………….2
1.3本文內容……………………………………………………….3
第二章離散餘弦/反離散餘弦轉換與MPEG-2編解碼系統簡介
2.1 演算法描述…………………………………………………………..4
2.1.1相關研究…………………………………………………………….4
2.1.2二維離散餘弦轉換………………………………………………….9
2.1.3二維反離散餘弦轉換…………………………………………....11
2.2 MPEG-2即時編解碼系統簡介……………………………………….15
2.2.1 MPEG-2編解碼系統……………………………………………….15
2.2.2 Profiles和levels……………………………………………….17
2.2.3系統需求……………………………………………………………18
第三章新架構的離散餘弦轉換
3.1架構設計………………………………………………………………21
3.1.1 傳統架構………………………………………………………….22
3.1.2 新架構說明……………………………………………………….24
3.2 二維離散餘弦轉換………………………………………………….25
3.3 第一級的一維離散餘弦轉換……………………………………….26
3.4 第二級的一維離散餘弦轉換……………………………………….29
3.5 乘法區塊之運算…………………………………………………….33
3.6 計算的準確性……………………………………………………….34
第四章硬體電路設計之概念與方法
4.1 PLA查表電路設計…………………………………………………..36
4.1.1 採用考量………………………………………………………...36
4.1.2 PLA查表電路……………………………………………………..37
4.1.3 PLA的設計流程…………………………………………………..38
4.2 累加運算電路……………………………………………………….45
4.2.1 累加多工器……………………………………………………….45
4.2.2 累加加法器……………………………………………………….45
4.2.3 輔助暫存器……………………………………………………….47
4.3 輸出單元…………………………………………………………….48
4.3.1 路徑多工器……………………………………………………….48
4.3.2 輸出暫存器……………………………………………………….48
4.4 控制電路…………………………………………………………….50
4.4.1 第一級的一維離散餘弦轉換之控制電路……………………….51
4.4.2 第二級的一維離散餘弦轉換之控制電路……………………….53
第五章超大型積體電路晶片設計及模擬結果
5.1 設計流程…………………………………………………………….56
5.2 晶片規格需求……………………………………………………….58
5.3 模擬結果…………………………………………………………….60
5.4 晶片實現結果與比較……………………………………………….61
第六章結論與未來發展
6.1 總結………………………………………………………………….65
6.2 檢討與建議………………………………………………………….67
6.3 未來發展…………………………………………………………….68
參考文獻………………………………………………………………….69
[1] “Video codec for audiovisual services at p´64 kbit/s,” ITU-T Recommendation H.261, Mar. 1993.
[2] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. on Consumer Electron., vol. 38, no. 1, pp. xviii — xxxiv, Feb. 1992
[3] “Coding of moving pictures and associated audio,” Committee Draft of Standard ISO 11172-2: ISO/MPEG, Dec. 1991.
[4] “Coding of moving pictures and associated audio,” Committee Draft of Standard ISO 13818-2: ISO/MPEG, Dec. 1993.
[5] R. Hopkins, “Digital terrestrial HDTV for North America: the grand alliance HDTV system,” IEEE Trans. on Consumer Electron., vol. 40, no. 3, pp. 185-198, Aug. 1994.
[6] N. Ahmeed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans. on Computer, vol. C-23, pp. 88-93, Jan. 1974.
[7] S. Wolter, D. Birreck, and R. Laur, “Classification for 2D-DCTs and a new architecture with distributed arithmetic,” IEEE International Sympoisum on Circuits and Systems, vol. 4, pp. 2204-2207, 1991.
[8] M. A. Haque, “A two-dimensional fast cosine transform,” IEEE Trans. on ASSP, vol. 33, no. 6, pp. 1532-1536, Dec. 1985.
[9] M. Yan and J. V. McCanny, “VLSI architectures for computing the 2D-DCT,” IEEE International Conference on Systolic Arrays, 1989.
[10] M. Vetterli, “Fast 2D discrete cosine transform,” ICASSP 85, pp. 1538-1541.[11] P. Duhamel and C. Guillemot, “Polynomial transform computation of the 2D-DCT,” ICASSP 90, pp. 1515-1518.
[12] N. I. Cho and S. U. Lee, “Fast algorithm and implementation of 2D discrete cosine transform,” IEEE Trans. on Circuits and System, vol. 38, no. 3, pp. 297-305, Mar. 1991.
[13] N. I. Cho, I. D. Yun, and S. U. Lee, “On the regular structure for the fast 2-D DCT algorithm,” IEEE Trans. on Circuits and System-II: analog and digital signal processing, vol. 43, no. 10, pp. 259-266, Oct. 1996.
[14] B. G. Lee, “A new algorithm to compute the discrete cosine transform,” IEEE Trans. on ASSP, vol. ASSP-32, no. 6, pp. 1243-1245, Dec. 1984.
[15] H. S. Hou, “A fast recursive algorithm for computing the discrete cosine transform,” IEEE Trans. on ASSP, vol. ASSP-35, no. 10, pp. 1445-1461, Oct. 1987.
[16] A. Artieri, E. Macoviak, F. Jutand, and N. Demassieux, “A VLSI one chip for real time two-dimensional discrete cosine transform,” IEEE International Sympoisum on Circuits and Systems, 1988.
[17] A. Madisetti and A. N. Willson, Jr., “A 100Mhz 2D 8´8 DCT/IDCT processor for HDTV applications,” IEEE Trans. on Circuit and System for Video Technology, vol. 5, no. 2, pp. 158-165, Apr. 1995.
[18] M.-H. Sheu, J.-Y. Lee, J.-F. Wang, A.-N. Suen, and L.-Y. Liu, “A High Throughput-Rate Architecture for 8´8 2-D DCT,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1587-1590, May 1993.
[19] S. A. White, “Applications of distributed arithmetic to digital sequence Processing: A Tutorial Review,” IEEE ASSP Magazine, pp. 5-19, Jul. 1989.
[20] P. N. Tudor, “Tutorial MPEG-2 video compression,” Electric & Communication Engineering Journal, pp. 257-264, Dec. 1995.
[21] P. Pirsch and H.-J. Stolberg, “Architectural approaches for video compression,” IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp.176 —185, Jul. 1997.
[22] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architectures for video compression — a survey,” Proceedings of the IEEE, vol. 83, no. 2, pp. 220-246, Feb. 1995.
[23] C.-C. Ju, “A high-throughput DCT/IDCT architecture and design methodology with application to real-time digital video codec system and associated CAD design,” Master Thesis, Nation Chiao-Tung University Electronics Engineering, Taiwan 1995.
[24] H.-K. Su, “A DCT/IDCT VLSI architecture for general video applications,” Master Thesis, Nation Chiao-Tung University Electronics Engineering, Taiwan 1998.
[25] J. C. Carlach, P. Penard, and J. L. Sicre, “TCAS: A 27Mhz 8´8 discrete cosine transform chip,” ICASSP 89, vol. 4, pp. 23-26, 1989.
[26] S.-I. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and M. Yashimoto, “A 100Mhz 2-D discrete cosine transform core processor,” IEEE J. Solid-State Circuit, vol. 27, no. 4, pp. 492-499, Apr. 1992.
[27] M.-H. Sheu, L.-Y. Lee, J.-F. Wang, and L.-Y. Liu, “A high throughput-rate architecture for 8´8 2-D DCT,” ICASSP 93, pp. 1587-1590, 1993.
[28] J.-S. Chiang and H.-C. Huang, “Novel architecture for two-dimensional high throughput rate real-time discrete cosine transform and the VLSI design,” Int. J. Electronic, pp. 519-527, 1997.
[29] C.-C. Ju and C.-Y. Lee, “A high throughput DCT/IDCT architecture with application to digital video codec system,” The 8th VLSI Design/CAD Symp. Taiwan, pp. 93-96, 1997.
[30] S. P. Kim and D. K. Pan, “High modular and concurrent 2-D DCT chip,” ISCAS 92, pp. 1082-1084, 1992.
[31] “IEEE standard specifications for the implementation of 8´8 inverse discrete cosine transform,” IEEE Std. 1180-1190, Mar. 1991.
[32] T. Miyazaki, “DCT/IDCT processor for HDTV developed with DSP silicon compiler,” J. VLSI Signal Processing, no. 5, pp. 151-158, 1993.
[33] M. Matsui, “A 200Mhz 13mm2 2D DCT macrocell using sense-amplifying pipeline flip-flop scheme,” IEEE J. Solid-State Circuit, Vol. 29, No. 12, pp. 1482-1489, Dec. 1994.
[34] H. Fujiwara, “An all-ASIC implementation of a low bit-rate video codec,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 2, pp. 123-134, Jun. 1992.
[35] V. Srinivasan and K. J. Ray Liu, “VLSI design of high-speed time recursive 2D DCT/IDCT processor for video applications,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 6, no.1, pp. 87-96, Feb. 1996.
[36] S.-C. Hsia, B.-D. Liu, J.-F. Yang, and B.-L. Bai, “VLSI implementation of parallel coefficient-by-coefficient two-dimensional IDCT processor,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 5, no. 5, pp. 396-405, Oct. 1995.
[37] C.-S. Huang, “The design and implementation of DCT/IDCT chip with novel architecture,” Master Thesis, Tamkang University Electronics Engineering, Taiwan 1999.
[38] C.-P. Lin, “The implementation of a novel DCT/IDCT chip,” Master Thesis, Tamkang University Electronics Engineering, Taiwan 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔