(34.237.124.210) 您好!臺灣時間:2021/02/25 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙志運
研究生(外文):Chee-Yuen Tew
論文名稱:以自我組織特徵映射圖為基礎之類神經模糊系統
論文名稱(外文):A Self-Organizing Feature-Map-Based Neuro-Fuzzy System
指導教授:賴友仁蘇木春蘇木春引用關係
指導教授(外文):Eugene LaiMu-Chun Su
學位類別:碩士
校院名稱:淡江大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:59
中文關鍵詞:自我組織特徵映射圖模糊系統類神經網路Kohonen 演算法
外文關鍵詞:Self-organizing feature mapfuzzy systemsneural networksKohonen algorithm
相關次數:
  • 被引用被引用:7
  • 點閱點閱:188
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
在設計一個模糊系統時,將會面對的挑戰之一是如何在計算效率和系統表現之間作一折衷的判斷。基本上,規則數目越多,模糊系統的效能也會越好;然而,所需付出的代價卻是計算量會變得極為龐大。在本論文中,我們提出一個簡單且有效的方法來解決這個困境。本論文利用了Kohonen的自我組織特徵映射圖演算法則(Self-organizing feature map, 簡稱SOM) 本身所具備的向量量化與拓撲關係的性質,來為模糊建模提供一個有效的方法。透過特徵映射圖的向量量化特性,我們可以搜尋出最具代表性的群聚中心;然後再運用其拓樸保存的特性以選擇出一組最具影響力的規則,而這組規則將被使用在系統輸出的計算。透過以上所提的方式,此系統在計算效率和系統表現之間能提供使用者一個適當的解決辦法。此外,為了進一步增加系統運算的速度,我們提出了一個迅速找尋得勝者的方法,讓我們可以從特徵映射圖中快速地將得勝者找出。為了驗證此以自我組織特徵映射圖為基礎之類神經模糊系統的效能,我們分別應用此系統於圖樣識別和系統鑑別的問題上。透過與傳統的類神經模糊系統的比較,我們的系統無論在辨識率或學習速度上都較傳統系統為佳。
One of the challenges that arise in designing a fuzzy system is the trade-off between computational efficiency and performance. Basically, the more rules, the more powerful the fuzzy system becomes. However, the price paid for the high performance is that the computational load becomes extremely large. In this thesis, the author proposes an appealing and easy solution to solve the dilemma. This thesis presents an efficient scheme for fuzzy modeling by using the Kohonen’s self-organizing feature map (SOM) algorithm through its vector quantization feature and its topological property. The vector quantization feature of feature maps is used to search a good supply of most representative cluster centers. Then the topology-preserving feature is fully utilized to select a set of most influential rules to be used in the computation of system outputs. By behaving this way, the proposed SOM-based fuzzy system provides an appealing solution to the trade-off between computational efficiency and performance. Besides, in order to further accelerate the computation of system outputs, the author also proposes a fast winner finding method to quickly locate winners in a feature map. To demonstrate the effectiveness of the proposed SOM-based fuzzy system, the proposed SOM-based fuzzy systems is applied on the problems of pattern recognition and system identification. From the simulation results show that the proposed SOM-based fuzzy system outperforms the conventional one-dimensional structured neuro-fuzzy systems on the recognition rates and the learning speed.
中文摘要 …………………………………………………………I
英文摘要 …………………………………………………………II
目錄 ………………………………………………………………IV
圖目錄 ……………………………………………………………VI
表目錄 ……………………………………………………………VIII
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
第一章緒論 ……………………………………………………1
1.1研究背景 ………………………………………………1
1.2類神經網路簡介 ………………………………………4
1.3模糊系統簡介 …………………………………………6
1.4論文架構 ………………………………………………8
第二章以放射狀基底函數為基礎之模糊系統 ………………9
2.1k-means演算法則 …………………………………… 9
2.2放射狀基底函數網路 ……………………………… 12
2.3系統架構 …………………………………………… 14
2.3.1網路初始化 ………………………………………… 15
2.3.2隱藏層的訓練法 …………………………16
2.3.3輸出層的訓練法 …………………………16
第三章以自我組織特徵映射圖為基礎之模糊系統 ……… 17
3.1自我組織特徵映射圖網路 ………………………… 17
3.1.1自我組織特徵映射圖演算法則 …………17
3.1.2參數的選擇 ………………………………20
3.1.3細調自我組織特徵映射圖 ………………24
3.2系統架構 …………………………………………… 25
3.2.1網路初始化 ………………………………………… 27
3.2.2模仿式學習法 ……………………………30
3.2.3採掘式學習法 ……………………………31
3.3快速搜尋得勝者的方法 …………………………… 32
第四章模擬結果 …………………………………………… 37
4.1550筆二維資料集合的分類問題 ……………………37
4.2系統鑑別的問題 …………………………………… 40
4.3時間序列預測的問題 ……………………………… 42
4.4電壓安全餘度估測的問題 ………………………… 44
第五章結論與展望 ………………………………………… 49
第六章參考文獻 …………………………………………… 52
[1]L. A. Zadeh, “Fuzzy sets,” Information Control, vol. 8, pp. 338-353, 1965.
[2]Y. J. Chen and C. C. Teng, “Rule combination in a fuzzy neural network,” Fuzzy Sets and Systems, vol. 82, pp. 161-166, 1996.
[3]J. S. Jang, C. T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall, New Jersey, 1997.
[4]B. Kosko, “Fuzzy systems as universal approximators,” IEEE International Conference on Fuzzy Systems, pp. 1153-1162, 1992.
[5]C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller — Part I,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, pp. 404-418, 1990.
[6]C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller — Part II,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, pp. 419-435, 1990.
[7]C. T. Lin and C. S. George Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice Hall, New Jersey, 1996.
[8]L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, New Jersey, 1997.
[9]R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control, (John Wiley, New York, 1994).
[10]J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information, Prentice Hall, New Jersey, 1999.
[11]C. -T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control and decision system,” IEEE Transactions on Computers, vol. 40, no. 12, pp. 1320-1336, 1991.
[12]L. -X. Wang and J. H. Mendel, “Back-propagation fuzzy systems as nonlinear dynamic system identifiers,” Proceeding of IEEE International Conference on Fuzzy Systems, pp. 1163-1170, San Diego, 1992.
[13]J. -S. Roger Jang, “ANFIS: adaptive-network-based fuzzy inference systems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665-685, 1993.
[14]B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical system Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJ, 1992.
[15]M. C. Su, “Identification of Singleton fuzzy Models via fuzzy hyper-rectangular composite NN,” Fuzzy Model Identification: Selected Approaches, H. Hellendoorn and D. Driankov, Eds., Springer-Verlag, pp. 193-212, 1997.
[16]M. C. Su, C. W. Liu, and S. S. Tsay, “Neural-network-based Fuzzy Model and its Application to Transient stability Prediction in Power System,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 29, no. 1, pp. 149-157, 1999.
[17]J. Hollatz, “Fuzzy identification using methods of intelligent data analysis,” Fuzzy Model Identification, H. Hellendoorn and D. Driankov, Eds., pp. 166-191, Springer-Verlag, Berlin, 1997.
[18]L. X. Wang, A Course in Fuzzy Systems and Control, Chapter 15, Prentice Hall, New Jersey, 1997.
[19]Y. Wang and G. Rong, “A self-organizing neural-network-based fuzzy system,” Fuzzy Sets and Systems, vol. 103, pp. 1-11, 1999.
[20]R. Babuška and H. B. Verbruggen, “Constructing Fuzzy Models by product Space Clustering,” Fuzzy Model Identification: Selected Approaches, H. Hellendoorn and D. Driankov, Eds., Springer-Verlag, pp. 53-90, 1997.
[21]M. -K. Park, S. -H. Ji, E. -T. Kim, and M. Park, “Identification of Takagi-Sugeno Fuzzy Models via Clustering and Hough Transform,” Fuzzy Model Identification: Selected Approaches, H. Hellendoorn and D. Driankov, Eds., Springer-Verlag, pp. 91-119.
[22]M. Delgado, M. A. Vila, and A. F. Gomez-Skarmeta, “Rapid Prototyping of Fuzzy Models Based on Hierarchical Clustering,” Fuzzy Model Identification: Selected Approaches, H. Hellendoorn and D. Driankov, Eds., Springer-Verlag, pp. 121-161.
[23]H. Hellendoorn and D. Driankov, Eds, Fuzzy Model Identification: Selected Approaches, Springer-Verlag, pp. XVIII, 1997.
[24]V. Vergara and C. Moraga, “Optimization of Fuzzy Models by Global Numeric Optimization,” Fuzzy Model Identification: Selected Approaches, H. Hellendoorn and D. Driankov, Eds., Springer-Verlag, pp. 251-278.
[25]F. Azam and H. F. VanLandingham, “Adaptive self organizing feature map neuro-fuzzy technique for dynamic system identification,” IEEE ISIC/CIRA/ISAS Joint Conference, pp. 337-341, Maryland, U.S.A., 1998.
[26]Farrukh Zia and Can Isik, “Neuro-Fuzzy Control Using Self-Organizing Neural Nets,” IEEE International Conference on Fuzzy Systems, vol. 1, pp. 70 —75, Orlando, 1994.
[27]T. Nishina, M. Hagiwara, and M. Nakagawa, “Fuzzy Inference Neural Networks which Automatically Partition a Pattern Space and Extract Fuzzy If-Then Rules,” IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1314 —1319, Orlando, 1994.
[28]W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.
[29]D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory, Wiley, New York, 1949.
[30]F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, vol. 65, pp. 386-408, 1958.
[31]M. L. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, Cambridge: MIT Press, 1969; 2nd ed., 1988.
[32]D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel Distributed Processing, Cambridge: MIT Press, vol. 1, 1986.
[33]G. H. Ball and D. J. Hall, “Some fundamental concepts and synthesis procedures for pattern recognition preprocessors,” International Conference on Microwaves, Circuit Theory, and Information Theory, Tokyo, Sept. 1964.
[34]J. Moody and C. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Computation, vol. 1, pp. 281-294, 1989.
[35]M. J. D. Powell, “Radial basis functions for multivariable interpolation: A review,” Algorithms for Approximation, eds., J. C. Mason and M. G. Cox, Oxford: Oxford University Press, pp. 143-167, 1987.
[36]T. Kohonen, Self-Organization and Associative Memory, 3rd ed. Heidelberg: Springer-Verlag, 1989.
[37] T. Kohonen, “Automatic formation of topological maps of patterns in a self-organizing system,” Proceeding of 2nd Scandinavian Conference on Image Analysis, pp. 214-220, 1981.
[38]T. Kohonen, “Clustering, taxonomy, and topological maps of patterns,” Proceeding of Sixth International Conference on Pattern Recognition, pp. 114-128, 1982.
[39]T. Kohonen, Self-organizing maps, Springer Series in Information Sciences, vol. 30, 1995.
[40]J. Kangas and T. Kohonen, “Developments and applications of the self-organizing map and related algorithms,” Mathematics and Computers in Simulation, vol. 41, pp. 3-12, 1996.
[41]J. A. Flanagan, “Analyzing a self-organizing algorithm,” Neural Networks, vol. 10, no. 5, pp. 875-883, 1997.
[42]J. A. Flanagan, “Self-organization in Kohonen’s SOM,” Neural Networks, vol. 9, no. 7, pp. 1185-1197, 1996.
[43]T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-1480, September 1990.
[44] F. Azam and H. F. VanLandingham, “Adaptive self organizing feature map neuro-fuzzy technique for dynamic system identification,” IEEE ISIC/CIRA/ISAS Joint Conference, pp. 337-341, Maryland, U.S.A., 1998.
[45]Z. —P. Lo and B. Bavarian, “On the rate of convergence in topology preserving neural networks,” Biological Cybernetics, vol. 65, pp. 55-63, 1991.
[46]B. Fritzke, “Growing cell structures-a self-organizing network for unsupervised and supervised learning,” Neural Networks, vol. 7, no. 9, pp. 1441-1460, 1994.
[47]Y. P. Jun, H. Yoon, J. W. Cho, “L* learning: a fast self-organizing feature map learning algorithm based on incremental ordering,” IEICE Transactions on Information & Systems, vol. E76, no. 6, pp. 698-706, 1993.
[48]M. C. Su, T. K. Liu, and H. T. Chang, “An efficient initialization scheme for the self-organizing feature map algorithm,” IEEE International Joint Conference on Neural Networks, Washington D.C., 1999.
[49]O. Cordón and F. Herrera, “Identification of Linguistic Fuzzy Models by Means of Genetic Algorithms,” Fuzzy Model Identification: Selected Approaches, H. Hellendoorn and D. Driankov, Eds. pp. 215-250.
[50]J. E. Box, G. M. Jenkins, Times Series Analysis, Forecasting and control, Holden Day Press, San Francisco, 1970.
[51]R. M. Tong, “The evaluation of fuzzy model derived from experimental data,” Fuzzy Sets and Systems, vol. 4, pp. 1-12, 1980.
[52]W. Pedrycz, “An identification algorithm in fuzzy relational system,” Fuzzy Sets and Systems, vol. 4, pp. 153-167,1984.
[53]C. W. Xu, Y. Z. Lu, “Fuzzy model identification and self-learning for dynamics systems,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 17, pp. 683-689, 1987.
[54]J. H. Nie, “Constructing fuzzy model by self-organizing counterpropagation network,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 6, pp. 963-970, 1995.
[55]A. Tiranuchit and R. J. Thomas, “A posturing strategy against voltage instabilities in electric power systems,” IEEE Transactions on Power Systems, vol. 3, pp. 87—93, Feb. 1988.
[56]Y. Tamura, H. Mori, and S. Iwamoto, “Relationship between voltage instability and multiple load flow solutions in electric power systems,” IEEE Transactions on Power Systems, vol. PAS-102, pp. 1115—1125, May 1983.
[57]C. L. DeMarco and T. J. Overbye, “An energy based stability measure for assessing vulnerability to voltage collapse,” IEEE Transactions on Power Systems, vol. 5, pp. 419—452, May 1990.
[58]T. Van Cutsem, “A method to compute reactive power margins with respect to voltage collapse,” IEEE Transactions on Power Systems, vol. 6, pp. 145—156, Feb. 1991.
[59]A. G. Phadke and J. S. Thorp, “Improved control and protection of power system through synchronized phasor measurements,” Control and Dynamic Systems, vol. 43. New York: Academic, pp.335—376, 1991.
[60]A. G. Phadke, “Synchronized phasor measurements in power systems,” IEEE Computer Applications in Power, vol. 6, pp. 10—15, May 1993.
[61]A. G. Phadke and J. S. Thorp, Computer Relaying for Power Systems. Wiley, New York, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔