|
[1]A. G. Ramm, "Uniqueness result for inverse problem of geophysics:I," Inverse Problems, vol. 6, pp. 635-641, Aug. 1990. [2]H. P. Baltes, Inverse scattering problems in optics. New York:Springer-verlag Berlin Heidelberg, 1980. [3]M. M. Ney, A. M. Smith and S. S. Stuchly, "A solution of electromagnetic imaging using pseudo inverse transformation," IEEE Trans. Med. Imaging, vol. 3, pp. 155- 162, Dec. 1984. [4]R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969. [5] N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982. [6] T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989. [7] D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990. [8] T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991. [9] R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968. [10] A. Roger, "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Trans. Antennas Propagate., vol. AP-29,pp.232-238, Mar. 1981. [11] W. Tobocman, "Inverse acoustic wave scattering in two dimensions from impenetrable targets," Inverse Problems, vol. 5,pp. 1131-1144,Dec. 1989. [12] C. C. Chiu and Y. M. Kiang, "Electromagnetic imaging for an imperfectly conducting cylinder," IEEE Trans. Microwave Theory Tech, vol. 39, pp. 1631- 1639, Sept. 1991. [13] G. P. Otto and W. C. Chew, "Microwave Inverse Scattering-Local Shape Function Imaging for Improved Resolution of Strong Scatters," IEEE Trans. Microwave Theory Tech., vol. 42, pp. I, Jan.1994. [14] D. Colton and P. Monk, "Anovel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region D," SIAMJ. Appl. Math., vol. 46, pp. 506-523, June 1986. [15] A. Kirsch, R. Kress, P. Monk and A. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, vol. 4, pp.749-770, Aug. 1988. [16] F. Hettlich, "Two methods for solving an inverse conductive scattering problem," Inverse Problems, vol. 10, pp. 375-385, 1994.[22] R. E. Kleinman and P. M. van den Berg, "Two-dimensional locationand shape reconstruction," Radio Science, vol. 29, pp. 1157-1169, July-Aug. 1994. [17] R. E. Kleinman and P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci., vol. 29, pp. 1157-1169, July- Aug. 1994. [18] F. Xiao and H. Yabe, "Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm coupled with deterministic method," IEICE Trans. Electron., vol. E81-C, pp. 784- 1792, Dec. 1998. [19] Z. Q. Meng, T. Takenaka and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm," Journal of Electromagnetic Waves and Application, vol. 13, pp. 95- 118, 1999. [20] C. C. Chiu and W. T. Chen, "Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm," IEEE Transactions on Microwave Theory and Techniques, vol. 48, Nov. 2000. [21] S. Caorsi, G. L. Gragnani, and M. Pastorina, "An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1062-1067, June 1991. [22] S. Caorsi, G. L. Gragnani, and M. Pastorino, "Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 581-589, May 1994. [23] S. Caorsi, G. L. Gragnani, and M. Pastorino, "Numerical electromagnetic inverse-scattering solutions for two-dimensional infinite dielectric cylinders buried in a lossy half-space," IEEE Trans. Microwave Theory Tech., vol. 41, pp. 352-256, Feb. 1993. [24] Z. Xiong and A. Kirsch, "Three-dimensional earth conductivity inversion," J. omput. Appl. Math., vol. 42, pp. 109-121, 1992. [25] T. M. Habashy and M. L. Oristaglio, "Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity," Radio Science, vol. 29, pp. 1101-1118, July-Aug., 1994. [26] W. Wang and S. Zhang, "Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies," IEEE Antennas Propagat., vol. 40, pp. 1292-1296, Nov.1992. [27] N. Joachimowicz, C. Pichot, and J. P. Hugonin, "Inverse scattering: an iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas Propagat., vol. 39, pp. 1742-1752, Dec. 1988. [28] Y. M. Wang and W. C. Chew, "An iterative solution of the two- dimensional electromagnetic inverse scattering problem," Int. J. Imag. Syst. Technol., vol. I, pp.100-108, Nov. 1989. [29] W. C. Chew and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method, " IEEE Trans. Med. Imaging, vol. 9, pp. 218-225, June 1990. [30] G. P. Otto and W. C. Chew, "Inverse scattering of H, waves using the local shape- function imaging: a T-matrix formulation," Int. J Imag. Syst. Technol., vol. 5, pp. 22-27, Jan. 1994. [31] D. Colton and P. Monk, "A modified dual space method for solving the electromagnetic inverse scattering problem for an infinite cylinder," Inverse problems, vol. 10, pp. 87-107,1994. [32] R. E. Kleinman and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," J. Comput. AppL Math., vol. 42, pp. 17- 35, 1992. [33] S. Barkeshli and R. G. Lautzenheiser, "An iterative method for inverse scattering problems based on an exact gradient search," Radio Science, vol. 29, pp. 1119- 1130, July-Aug., 1994. [34] C. S. Ho, C. C. Chiu and E. Lai, "Inverse Scattering of a Two-dimensional Periodic Conductor," 2001 International Conference on Radar. (Accepted for publication) [35] C. C. Chiu and C. S. Ho "Image Reconstruction of a Two-Dimensional Periodic Conductor by the Genetic Algorithm," Journal of Electromagnetic Waves and Applications. (Accepted for publication). [36] R. E. Jorgenson and R. Mittra, "Efficient calculation of the free-space periodic Green’s function," IEEE Trans. Antenna Propagat., vol. 38, pp. 633-642, May 1990. [37] G. S. Wallinga, E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "Efficient computation of the two-dimensional periodic Green’s function," IEEE Tran. Antenna Propagat., vol. 47, pp. 895-897, May 1999. [38] F. B. Hildebrand, Methods of Applied Mathematics, New Jersey: Prentice-Hall, 1965. [39] T. B. A. Senior, "Approximation boundary conditions," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 826-829, Sept. 1981. [40] F. M. Tesche, "On the inclusion of loss in time domain solutions of electromagnetic interaction problems," IEEE Trans. Electromagn. Compat., vol. EMC-32, pp. 1-4, Feb. 1990.
|