(44.192.112.123) 您好!臺灣時間:2021/03/01 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何政勳
研究生(外文):Cheng-Shun Ho
論文名稱:二維週期性物體之影像重建
論文名稱(外文):Image Reconstruction of a Two-Dimensional Periodic Object
指導教授:丘建青
指導教授(外文):Chien-Ching Chiu
學位類別:碩士
校院名稱:淡江大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:74
中文關鍵詞:週期逆散射
外文關鍵詞:periodicInverse scattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
論文名稱:二維週期性物體之影像重建 頁數:74
校系(所)組別: 淡江大學 電機工程學系 通訊系統組
畢業時間及提要別:八十九學年度第 二 學期 碩士 學位論文提要
研究生: 何政勳 指導教授:丘建青 博士
論文提要內容:
本論文的目的在研究二維週期性完全導體與不完全導體之電磁成像問題。
我們針對平面波入射的情況下,分別就週期性完全導體及不完全導體的逆散射進行探討。
首先探討週期性完全導體在自由空間的逆散射,文中對凹形物體的重建做深入的探討,另外也分析近場量測與遠場量測對影像重建的影響。接著配合表面阻抗的概念將逆散射法則推廣到非完全導體的情形。然後引入基因法則將逆散射問題轉化為求解最佳化的問題。藉以重建物體的週期大小、形狀函數與導電率。
不論初始的猜測值如何,基因法則總會收歛到整體的極值(global extreme),因此在數值模擬顯示中,即使最初的猜測值遠大於實際值,我們仍可求得準確的數值解,成功的重建出物體的週期大小、形狀函數與導電率。而且在數值模擬顯示中,量測的散射場即使加入均勻分佈的雜訊存在,依然可以得到良好的重建結果,研究證實其有良好的抗雜訊能力。而以微分為基礎求取極值的方法(calculus-based method),卻常常會陷入區域極值(local extreme)的陷阱裡。
我們也發現,無論在完全導體以及非完全導體中,週期大小的收斂速度總是優於形狀函數。且在非完全導體中,另可發現形狀函數的收斂速度總是優於導電率,因此可知週期大小對散射場之貢獻最大,形狀函數對散射場的貢獻次之,導電率對散射場的貢獻最小。

The paper presents a computational approach to the imaging of a two-dimensional periodic perfectly and imperfectly conducting cylinder. The image reconstruction of a two-dimensional periodic perfectly and imperfectly conductor by the genetic algorithm is investigated. A periodic perfectly and imperfectly conducting cylinder of unknown periodic length, shape and conductivity scatters the incident wave in free space and the scattered field is recorded outside. Based on the boundary condition and the measured scattered field, a set of nonlinear integral equations is derived and the imaging problem is reformulated into an optimization problem. The genetic algorithm is then employed to find out the global extreme solution of the cost function. As a result, the periodic length, the shape and the conductivity of the conductor can be obtained. Numerical results are given to demonstrate that even in the presence of noise, good reconstruction has been obtained.

第一章簡介 ………………………………………………………… 1
1-1節研究動機與相關文獻 ……………………………… 1
1-2節本研究之貢獻…………………………………………… 6
1-3節各章內容簡述…………………………………………… 7
第二章週期性完全導體在自由空間之逆散射 ………………… 8
2-1節 理論推導………………………………………………… 8
2-2節 數值方法……………………………………………… 10
2-2-1 動差法求正散射公式……………………………… 11
2-2-2 基因演算法則……………………………………… 12
2-2-3 基因法則在逆散射的應用………………………… 21
2-3節 模擬結果………………………………………………… 22
2-4節 結論……………………………………………………… 25
第三章週期性不完全導體在自由空間之逆散射………………… 40
3-1節 理論推導 ……………………………………………… 40
3-2節 數值方法 ……………………………………………… 43
3-2-1 動差法求正散射公式……………………………… 43
3-2-2 基因法則在逆散射的應用………………………… 44
3-3節 模擬結果 ………………………………………………45
3-4節 結論 ……………………………………………………50
第四章結論與展望 ……………………………………………… 63
附錄一 加快週期性格林函數收斂的方法 ………………………… 66
附錄二 當 時改進週期性格林函數收斂的方法………… 68
參考文獻……………………………………………………………… 69

[1]A. G. Ramm, "Uniqueness result for inverse problem of geophysics:I," Inverse Problems, vol. 6, pp. 635-641, Aug. 1990.
[2]H. P. Baltes, Inverse scattering problems in optics. New York:Springer-verlag Berlin Heidelberg, 1980.
[3]M. M. Ney, A. M. Smith and S. S. Stuchly, "A solution of electromagnetic imaging using pseudo inverse transformation," IEEE Trans. Med. Imaging, vol. 3, pp. 155- 162, Dec. 1984.
[4]R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[5] N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[6] T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[7] D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[8] T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[9] R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[10] A. Roger, "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Trans. Antennas Propagate., vol. AP-29,pp.232-238, Mar. 1981.
[11] W. Tobocman, "Inverse acoustic wave scattering in two dimensions from impenetrable targets," Inverse Problems, vol. 5,pp. 1131-1144,Dec. 1989.
[12] C. C. Chiu and Y. M. Kiang, "Electromagnetic imaging for an imperfectly conducting cylinder," IEEE Trans. Microwave Theory Tech, vol. 39, pp. 1631- 1639, Sept. 1991.
[13] G. P. Otto and W. C. Chew, "Microwave Inverse Scattering-Local Shape Function Imaging for Improved Resolution of Strong Scatters," IEEE Trans. Microwave Theory Tech., vol. 42, pp. I, Jan.1994.
[14] D. Colton and P. Monk, "Anovel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region D," SIAMJ. Appl. Math., vol. 46, pp. 506-523, June 1986.
[15] A. Kirsch, R. Kress, P. Monk and A. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, vol. 4, pp.749-770, Aug. 1988.
[16] F. Hettlich, "Two methods for solving an inverse conductive scattering problem," Inverse Problems, vol. 10, pp. 375-385, 1994.[22] R. E. Kleinman and P. M. van den Berg, "Two-dimensional locationand shape reconstruction," Radio Science, vol. 29, pp. 1157-1169, July-Aug. 1994.
[17] R. E. Kleinman and P. M. van den Berg, “Two-dimensional location and shape reconstruction,” Radio Sci., vol. 29, pp. 1157-1169, July- Aug. 1994.
[18] F. Xiao and H. Yabe, "Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm coupled with deterministic method," IEICE Trans. Electron., vol. E81-C, pp. 784- 1792, Dec. 1998.
[19] Z. Q. Meng, T. Takenaka and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm," Journal of Electromagnetic Waves and Application, vol. 13, pp. 95- 118, 1999.
[20] C. C. Chiu and W. T. Chen, "Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm," IEEE Transactions on Microwave Theory and Techniques, vol. 48, Nov. 2000.
[21] S. Caorsi, G. L. Gragnani, and M. Pastorina, "An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1062-1067, June 1991.
[22] S. Caorsi, G. L. Gragnani, and M. Pastorino, "Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 581-589, May 1994.
[23] S. Caorsi, G. L. Gragnani, and M. Pastorino, "Numerical electromagnetic inverse-scattering solutions for two-dimensional infinite dielectric cylinders buried in a lossy half-space," IEEE Trans. Microwave Theory Tech., vol. 41, pp. 352-256, Feb. 1993.
[24] Z. Xiong and A. Kirsch, "Three-dimensional earth conductivity inversion," J. omput. Appl. Math., vol. 42, pp. 109-121, 1992.
[25] T. M. Habashy and M. L. Oristaglio, "Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity," Radio Science, vol. 29, pp. 1101-1118, July-Aug., 1994.
[26] W. Wang and S. Zhang, "Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies," IEEE Antennas Propagat., vol. 40, pp. 1292-1296, Nov.1992.
[27] N. Joachimowicz, C. Pichot, and J. P. Hugonin, "Inverse scattering: an iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas Propagat., vol. 39, pp. 1742-1752, Dec. 1988.
[28] Y. M. Wang and W. C. Chew, "An iterative solution of the two- dimensional electromagnetic inverse scattering problem," Int. J. Imag. Syst. Technol., vol. I, pp.100-108, Nov. 1989.
[29] W. C. Chew and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method, " IEEE Trans. Med. Imaging, vol. 9, pp. 218-225, June 1990.
[30] G. P. Otto and W. C. Chew, "Inverse scattering of H, waves using the local shape- function imaging: a T-matrix formulation," Int. J Imag. Syst. Technol., vol. 5, pp. 22-27, Jan. 1994.
[31] D. Colton and P. Monk, "A modified dual space method for solving
the electromagnetic inverse scattering problem for an infinite cylinder," Inverse problems, vol. 10, pp. 87-107,1994.
[32] R. E. Kleinman and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," J. Comput. AppL Math., vol. 42, pp. 17- 35, 1992.
[33] S. Barkeshli and R. G. Lautzenheiser, "An iterative method for inverse scattering problems based on an exact gradient search," Radio Science, vol. 29, pp. 1119- 1130, July-Aug., 1994.
[34] C. S. Ho, C. C. Chiu and E. Lai, "Inverse Scattering of a Two-dimensional Periodic Conductor," 2001 International Conference on Radar. (Accepted for publication)
[35] C. C. Chiu and C. S. Ho "Image Reconstruction of a Two-Dimensional Periodic Conductor by the Genetic Algorithm," Journal of Electromagnetic Waves and Applications. (Accepted for publication).
[36] R. E. Jorgenson and R. Mittra, "Efficient calculation of the free-space periodic Green’s function," IEEE Trans. Antenna Propagat., vol. 38, pp. 633-642, May 1990.
[37] G. S. Wallinga, E. J. Rothwell, K. M. Chen, and D. P. Nyquist, "Efficient computation of the two-dimensional periodic Green’s function," IEEE Tran. Antenna Propagat., vol. 47, pp. 895-897, May 1999.
[38] F. B. Hildebrand, Methods of Applied Mathematics, New Jersey: Prentice-Hall, 1965.
[39] T. B. A. Senior, "Approximation boundary conditions," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 826-829, Sept. 1981.
[40] F. M. Tesche, "On the inclusion of loss in time domain solutions of electromagnetic interaction problems," IEEE Trans. Electromagn. Compat., vol. EMC-32, pp. 1-4, Feb. 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔