跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍俊雄
研究生(外文):Chun-Hsiung Lan
論文名稱:有限資源下生產設計與控制之研究
論文名稱(外文):Production Design and Control with Finite Resource Capacity
指導教授:陳淼勝陳淼勝引用關係
指導教授(外文):Miao-Sheng Chen
學位類別:博士
校院名稱:淡江大學
系所名稱:管理科學學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
論文頁數:105
中文關鍵詞:有限資源最短路徑法最大流量法確定性需求隨機性需求
外文關鍵詞:Finite ResourceShortest Route MethodMaximal Flow MethodDeterministic DemandProbabilistic Demand
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有限可取得資源是製造廠在實施產品生產規劃時常遇到的問題。而“資源”乃指與生產所需之一切相關設備、人力與原物料等謂之。實務上,製造者希望依其現有機具型式與數目做為生產線設計之依據。本研究在第三章中分別就單一生產線及多重生產線系統提出了兩個不同的設計模式,並分別應用最短路徑及最大流量方法來求解。同時,求解所需之逐步數學演算法亦在本章提出。
製造商欲仍擁有高度的競爭優勢,不僅需積極投入研發新技術且同時要由減少不必要的支出、有效的利用現有資源、以及控制生產速率作為考量的方向。再者,由於近年來消費者消費能力的增加,其對商品的需求已轉向精緻與多元化。因此,市場導向之商品使製造商更加難以掌握需求型態。於是,隨機性市場需求考量下的生產計畫也因此而益顯重要。本研究中對隨機性與確定性需求下生產之產品有不同的考量;前者以考量生產利潤最大化為目標,後者則以生產成本最小化為主。本研究在第四章中討論有限工時下,單階段製程商品之最佳生產計畫,並且分別對確定性與隨機性市場需求建構數理模式與求取其最佳生產速率函數。另外,不同市場需求下,針對參數變動而最佳解改變之敏感性分析亦分別在本章被提出。
第五章則延續單階段製程產品生產控制問題,衍生為有限工時下多階段序列式製程產品生產速率之控制。本章仍分別對確定性與隨機性市場需求考量下建構數理模式並求取其最佳生產速率函數。另外,不同市場需求下,針對參數變動最佳解改變之敏感性分析亦同時在本章被提出。

The finite resource capacity for production scheduling is the major problem confronting manufacturing industry. The resources represent production related equipments, operational labors, raw materials and so on. Practically, the types of machines and the quantity of each type are the most concerned decision parameters in production design for the manufacturer. This research proposes two different models for designing single production line and multiple-production-line system in Chapter 3. In addition, the Shortest Route Method and Maximal Flow Method are applied to resolve the problems in these two models respectively. Moreover, the step-by-step algorithm to reach the optimal solution for each model is also proposed in Chapter 3.
To keep the higher competitive advantage, manufacturers keep not only in developing high technology but also reducing the unnecessary costs moderately, using the obtainable resources efficiently, and controlling the production rate appropriately. Besides, the elaboration and diversification of products are arising along the consumer’s demand. Therefore, the market demand becomes complicated and hard-solving for manufacturers. Thus, the consideration of production plan under probabilistic demand is becoming more important. However, the production decisions for products in probabilistic and deterministic demands are significantly different in this study. They are determined by maximum profit and minimum cost respectively. Hence, the optimal production plan for the single-stage manufactured product under limited working hours is then discussed in Chapter 4 of this study. In addition, the mathematical models for deterministic and probabilistic market demands to achieve the optimal functions of production rate are presented in this chapter. Moreover, the sensitivity analyses for optimal solution with different market demands are also fully provided.
Following the production control problems of the single-stage manufactured product, the multi-stage manufactured product under limited working hours is extended in Chapter 5. In addition, the mathematical models for deterministic and probabilistic market demands to reach the optimal functions of production rate are also provided and the sensitivity analyses for optimal solution with different market demands are comprehensively proposed in the same chapter.

第一章緒論
1.1 問題背景
1.2 研究動機
1.3 本文架構
第二章 相關文獻探討
2.1 彈性生產
2.2 隨機與確定性市場需求
2.3 工作站速率控制
第三章 生產線及系統設計之模式
3.1 假設與符號說明
3.2 SPL 模式
3.2.1 模式發展與逐步演算法
3.2.2 數值範例
3.3 MPL 模式
3.3.1 模式發展與逐步演算法
3.3.2 最佳解的證明
3.3.3 數值範例
第四章 單階段製程生產速率控制模式
4.1 假設與符號說明
4.2 DPPD 模式
4.2.1 模式建立與最佳解
4.2.2 決策準則
4.2.3 敏感性分析
4.3 DPPP 模式
4.3.1 模式建立與最佳解
4.3.2 敏感性分析
第五章 多階段製程生產速率控制模式
5.1 假設與符號說明
5.2 MDPPD 模式
5.2.1 模式發展
5.2.2 最終最佳解之候選解
5.2.3 敏感性分析
5.3 MDPPP 模式
5.3.1 模式發展
5.3.2 最終最佳解之候選解
5.3.3 敏感性分析
第六章 結論
6.1 主要研究結果
6.2 未來研究方向
參考文獻
附錄A
附錄B-1
附錄B-2
附錄C
附錄D

參考文獻
[1] Beach, R., Muhlemann, A.P., Price, D.H.R., Paterson, A. and Sharp, J.A. (2000), “A review of manufacturing flexibility,” European Journal of Operational Research, Vol. 122, pp. 41-57.
[2] Bukchin, J. and Tzur, M. (2000), “Design of flexible assembly line to minimize equipment cost,” IIE Transactions, Vol. 32, pp. 585-598.
[3] Chen, J. and Steiner, G. (1998), “Lot streaming with attached setups in three-machine flow shops,” IIE Transactions, Vol. 33, No.11, pp. 1075-1084.
[4] Chen, J. and Steiner, G. (1999), “Discrete lot streaming in two-machine flow shops,” INFOR, Vol. 37, No. 2, pp. 160-173.
[5] Chen, M.S. and Chen, Y.C. (1994), “A production inventory problem with random point demand,” Yugoslav Journal of Operations Research, Vol. 4, No. 1, pp. 35-42.
[6] Chen, M.S. and Chen, Y.C. (1994), “On two-stage production planning of newsboy problem with production and holding costs,” Decision, Vol. 21, No. 1 & 2, pp. 1-17.
[7] Chen, M.S. and Lin, C.T. (1990), “An example of disbenefits of centralized stocking,” Journal of Operational Research Society, Vol. 41, No. 3, pp. 259-262.
[8] Chiang, A. (1992), Dynamic Optimization, McGraw-Hill Inc., Singapore.
[9] Chung, K.H. (1990), “Risk in inventory models: the case of the newsboy problem optimality condition,” Journal of Operational Research Society, Vol. 41, No. 2, pp. 625-632.
[10] de Castro, E.L., Tabucanon, M.T., and Nagarur, N.N. (1997), “A production order quantity model with stochastic demand for a chocolate milk manufacturer,” International Journal of Production Economics, Vol. 49, No. 2, pp. 145-156.
[11] Drobouchevitch, I.G. and Strusevich, V.A. (2000), “Heuristics for the two-stage job shop scheduling problem with a bottleneck machine,” European Journal of Operational Research, Vol. 123, pp. 229-240.
[12] Dumoulin, A. and Vercellis, C. (2000), “Tactical models for hierarchical capacitated lot-sizing problems with set-ups and changeovers,” International Journal of Production Research, Vol. 38, No. 1, pp. 51-67.
[13] Gavirneni, S. and Morton, T.E. (1999), “Inventory control under speculation: Myopic heuristics and exact procedures,” European Journal of Operational Research, Vol. 117, No. 2, pp. 211-221.
[14] Gencer, C., Erol, S., and Erol, Y. (1999), ”A decision network algorithm for multi-stage dynamic lot sizing problems,” International Journal of Production Economics, Vol. 62, No. 3, pp. 281-285.
[15] Grosfeld-Nir, A and Gerchak, Y. (1996), “Production to order with random yields: single-stage multiple lot-sizing,” IIE Transactions, Vol. 28, pp. 669-676.
[16] Gunasekaran, A., Goyal, S.K., and Martikainen, T. (1998), “Production capacity planning and control in multi-stage manufacturing,” The Journal of the Operational Research Society, Vol. 49, No. 6, pp. 625-634.
[17] Gurnani, H., Akella, R. and Lehoczky, J. (2000), “Supply management in assembly systems with random yield and random demand,” IIE Transactions, Vol. 32, pp. 701-714.
[18] Hua, Z. and Banerjee, P. (2000), “Aggregate line capacity design for PWB assembly systems,” International Journal of Production Research, Vol. 38, No. 11, pp. 2417-2441.
[19] Johri, P.K. (1987), “A linear programming approach to capacity estimation of automated production lines with finite buffers,” International Journal of Production Research, Vol. 25, No. 6, pp. 851-866.
[20] Kalir, A. and Arzi, Y. (1997), “Automated production line design with flexible unreliable machines for profit maximization,” International Journal of Production Research, Vol. 35, No. 6, pp. 1651-1664.
[21] Kalir, A. and Arzi, Y. (1998), “Optimal design of flexible production lines with unreliable machines and infinite buffers,” IIE Transactions, Vol. 30, pp. 391-399.
[22] Kamien, M. and Schwartz, N. (1991), Dynamic Optimization, Elsevier Science Publishing Co. Inc., New York.
[23] Khouja, M. (1999), “The single-period (news-vendor) problem: Literature review and suggestions for future research,” Omega, Vol. 27, No. 5, pp. 537-553.
[24] Klarin, M.M., Cvijanovic, J.M., and Brkic, V.K.S. (2000), “The shift level of the utilization of capacity as the stochastic variable in work sampling,” International Journal of Production Research, Vol. 38, No. 12, pp. 2643-2651.
[25] Koltai, T., Lozano, F.G., and Onieva, L. (2000), “A flexible costing system for flexible manufacturing systems using activity based costing,” International Journal of Production Research, Vol. 38, No. 7, pp. 1615-1630.
[26] Kumar, A., Jacobson, S.H. and Sewell, E.C. (2000), “Computational analysis of a flexible assembly system design problem,” European Journal of Operational Research, Vol. 123, pp. 453-472.
[27] Laguna, M. (1999), “A heuristic for production scheduling and inventory control in the presence of sequence-dependent setup times,” IIE Transactions, Vol. 31, No. 2, pp. 125-134.
[28] Lee, S.D. and Rung, J.M. (2000), “Production lot sizing in failure prone two-stage serial systems,” European Journal of Operational Research, Vol. 123, pp. 42-60.
[29] Li, C.L. and Kouvelis, P. (1999), “Flexible and risk-sharing supply contracts under price uncertainty,” Management Science, Vol. 45, No. 10, pp. 1378-1398.
[30] Martin, G.E. (1994), “Optimal design of production lines,” International Journal of Production Research, Vol. 32, No. 5, pp. 989-1000.
[31] Metters, R. (1997), “Production planning with stochastic seasonal demand and capacitated production,” IIE Transactions, Vol. 29, pp. 1017-1029.
[32] Nowicki, E. and Smutnicki, C. (1998), “The flow shop with parallel machines: A tabu search approach,” European Journal of Operational Research, Vol. 106, No. 2,3, pp. 226-253.
[33] Olafsson, S. and Shi, L. (2000), “A method for scheduling in parallel manufacturing systems with flexible resources,” IIE Transactions, Vol. 32, pp. 135-146.
[34] Park, M.W. and Kim, Y.D. (2000), “A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints,” European Journal of Operational Research, Vol. 123, pp. 504-518.
[35] Rardin R.L. (1998), Optimization in Operations Research, Prentice Hall, London.
[36] Rossi, A. and Dini, G. (2000), “Dynamic scheduling of FMS using a real-time genetic algorithm,” International Journal of Production Research, Vol. 38, No. 1, pp. 1-20.
[37] Shewchuk, J.P. and Moodie, C.L. (2000), “Flexibility and manufacturing system design: an experimental investigation,” International Journal of Production Research, Vol. 38, No. 8, pp. 1801-1822.
[38] Smith, S.A. and Agrawal, N. (2000), “Management of multi-item retail inventory systems with demand substitution,” Operation Research, Vol. 48, No. 1, pp. 50-64.
[39] Soroush, H. (1999), “Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs,” European Journal of Operational Research, Vol. 113, pp. 450-468.
[40] Sox, C. and Muckstadt, J. (1997), “Optimization-based planning for the stochastic lot-scheduling problem,” IIE Transactions, Vol. 29, pp. 349-357.
[41] Staudacher, A.P. (2000), “ISTS: a new procedure for the integrated scheduling of multi-stage systems,” International Journal of Production Research, Vol. 38, No. 11, pp. 2489-2514.
[42] Swaminathan, J.M. (2000), “Tool capacity planning for semiconductor fabrication facilities under demand uncertainty,” European Journal of Operational Research, Vol. 120, pp. 545-558.
[43] Taha, H.A. (1995), Operations Research, Prentice Hall, Singapore.
[44] Takeda, K. and Kuroda, M. (1999), “Optimal inventory configuration of finished and semifinished products in multi-stage production/inventory system with an acceptable response time,” Computers & Industrial Engineering, Vol. 37, No. 1,2, pp. 251-255.
[45] Tsubone, H., Anzai, M., Sugawara, M., and Matsuura, H. (1991), “An interactive production planning and scheduling system for a flow-type manufacturing process,” International Journal of Production Economics, Vol. 22, No. 1, pp. 43-51.
[46] Tzai, D.M. and Yao, M.J. (1993), “A line-balance-based capacity planning procedure for series-type robotic assembly line,” International Journal of Production Research, Vol. 31, No. 8, pp. 1901-1920.
[47] Yamashita, H. and Altiok, T. (1998), “Buffer capacity allocation for a desired throughput in production lines,” IIE Transactions, Vol. 30, pp. 883-891.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top