(3.235.11.178) 您好!臺灣時間:2021/03/07 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張碧峰
研究生(外文):Pi-Feng Chang
論文名稱:微文氏管與孔口之研製
論文名稱(外文):Fabrication of Micro Venturi Tube and Orifice
指導教授:康尚文
指導教授(外文):Shung-Wen Kang
學位類別:碩士
校院名稱:淡江大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:76
中文關鍵詞:微文氏管高分子微加工乾蝕刻
外文關鍵詞:micro venturi tubepolymer micro machiningdry etching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:329
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
本文利用兩種不同的技術,高分子新型微加工技術製和半導體製程技術分別製作三維微文氏管與二維式微文氏管,首先利用聚甲基丙烯酸酯可( PMMA, Polymethylmethacrylate )與甲醇( methyl )產生物理化學變化,質傳效應使聚甲基丙烯酸酯發生膨潤現象,利用此一現象來進行高分子加工成形。目前利用此技術可將喉部收縮至100mm,在成形均勻度與表面粗度等上有改進空間。其次利用乾蝕刻(dry etching)與靜電接合(anodic bonding)技術於矽晶片上製作微文氏管(micro venturi tube)、微孔口板(micro orifice)及微噴嘴(micro nozzle),並以氮氣為工作流體,流道寬度由100~200mm、喉部尺寸為25~50mm及流道深寬比0.025~0.11下進行測試。當流體流經微流道會發生滑動與壓縮現象,在探討流道內各種不同微結構對流力特性的影響,只能做初步的討論,而這幾組壓力降與流量數據是由微文氏管(進口角度為20°及40°)、微孔口與微直流道等量測而得。
This paper is proposed to utilize two different processing technologies, polymer micro machining and silicon bulk micro machining to fabricate 3D micro venturi tube and 2D micro venturi tube respectively. In the first, combining polymethylmethacrylate (PMMA) and methyl to generate physical-chemical change, PMMA appears swelling phenomenon by mass transfer effects. This polymer swelling process can form 3D micro venturi tube. Now it is successful to reduce the throat size of tube up to 100mm by using the technologies, but the machining uniformity and the surface roughness still is worth to improve. Secondly, 2D micro venturi tube, micro orifice and micro nozzle are fabricated in silicon wafer with #7740glass by dry etching and anodic bonding technology. Using nitrogen gas as working fluid, experiments were conducted by these 2D microstructures with channel width of 100~200mm, throat size of 25~50mm and aspect ratio of 0.025~0.11. Fluid flowed through micro channel to show sliding and compressible phenomenon. Preliminary research has been done to investigate the fluid flow characteristics in each different micro channel structure. A series of pressure drop and flow rate data were measured and evaluated for inlet 20-degree, 45-degree micro venturi tube, micro orifice, and straight micro channel.
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 文獻回顧 3
第二章 理論分析 8
2-1 高分子質傳理論概 8
2-2 流量量測概述 10
2-3 流力分析 15
2-3-1 內部流動之限制流量 15
2-3-2 可壓縮流動概論 18
2-3-3 氣體流量量測理論 21
第三章 製程設計與封裝 23
3-1高分子微加工成形 23
3-1-1 三板式微文氏管製程 23
3-1-2 微文氏管之拉伸成形製程 29
3-2 矽質微細加工 30
3-2-1製程技術 30
3-2-2 封裝技術 39
第四章 實驗量測 41
4-1 實驗概述 41
4-2 流道表面粗糙度量測 44
4-2 儀器誤差校正 45
第五章 實驗分析與討論 47
5-1直流道流力實驗分析 47
5-2 流道內不同微結構之影響 49
第六章 結論 54
參考文獻 56
附錄1 流量計之分類 59
附錄2 差壓式流量計特性 60
附錄 3 Druck DPI705壓力感測器校正表 61
附錄 4 氣泡式流量計校正表 62
附錄 5 定流量換算壓力數據 63
附錄 6 長短流道之壓力梯度數據 67
附錄 7 微流道內部各種不同微結構之量測數據 68
1.M.M. Farooqui and A.G.R. Evans,“ Microfabrication of Submicron Nozzles in Silicon Nitride ”, Journal of microelectromechical system, Vol. 1, No. 2, pp. 86-89, 1992.
2.Ehrfeld, W.; Gotz, F.; Munchmeyer, D.; Schelb, W.; Schmidt, D.“LIGA process: sensor construction techniques via X-ray lithography ”, Solid-State Sensor and Actuator Workshop, 1988. Technical Digest., IEEE , pp. 1-4.
3.E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer “ Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process) ”, Microelectronic Engineering, Vol. 4, pp. 35-56, 1986.
4.J.M. Shaw, J.D. Gelorme, N.C. IaBinca, W.E. Conley and S.J. Holmes, Vol. 41, pp. 81-94, 1997.
5.B. Loechel, R. Demmeler, M.Rothe, W. Bruenger, S. Fehlberg and G. Gruetzner, J.Vac. Sci. Technol.B 14(6), pp. 4179-4183, 1996.
6.Jan. Soderkvist, Sensor and Actuators, A: Physical, Vol. 43, pp. 65-71, 1994.
7.F.Paoletti, M.A. Gretillat and N.F. de Rooij, MEMS 96, pp. 162-167, 1996.
8.C.B. Lin, M.K. Wei, C.H. Liu, C.H. Yen, Z.B. Su, Y.T. Tai and Z.H. Chen,“A novel fabrication process for high-aspect-ratio and co-axial multi-layer nickel microstructures ”, MEMS 2000, 2000.
9.陳堯福、戴世文;“流量計的選擇”;量測資訊,第14期,pp.5-10,1990年。
10.J. Q. Liu, Y. C. Tai, K. C. Pong and C. M. Ho, “Micro-Machined
Channel / Pressure Sensor Systems for Micro Flow Studies”,
Transducer’93, pp.995- 997,1993.
11.Xinxin Li, Wing Yin Lee, Man Wong, Yitshak Zohar, “Gas flow in constriction microdevices”, Sensors and Actuators, A: Physical, Vol. 83, pp. 277-283, 2000.
12.Gh. Mohiuddin Mala, Dongqing Li, “Flow Characteristics of Water in Microtubes”, Int. J. Heat and Fluid Flow, Vol. 20, pp. 142-148, 1999.
13.王昭彬;“高分子交聯度對擴散係數影響之研究C;國立成功大學化學工程研究所碩士論文,民國79年6月。
14.R.W. Fox, A.T. McDonald, “Introduction to Fluid Mechanics”,
4th ed. John Wiley & Sons, Inc. 1992.
15.R.W. Miller,“Flow Measurement Engneering Handbook”, 3rd ed. New Yrok:McGraw-Hill, 1996.
16.Errol B. Arkilic, Martin A. Schmidt and Kenneth S. Breuer, “Gaseous Slip Flow in Long Microchannels”, Journal of Microelectromechanical System, Vol.6, No.2, pp.167-178, 1997.
17.賴建芳,淋裕城,”微機電系統製程之接合技術”,機械月刊,第25卷,第11期,pp. 314-321,1999年
18.G. Wallis, D. I. Pomerantz, “Field Assisted Glass-Metal Sealing”, Journal of Applied Physics, Vol. 40, No. 10, pp. 3946-3949, 1969.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔