跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:夏時軒
研究生(外文):Shih-Hsuan Sha
論文名稱:圓杯引伸成形之異向性分析
論文名稱(外文):Anisotropic Analysis of Cylindrical Cup Drawing
指導教授:李經綸李經綸引用關係
指導教授(外文):Ching-Lun Li
學位類別:碩士
校院名稱:淡江大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:98
中文關鍵詞:彈塑性有限元素異向性板材引伸退化殼元素
外文關鍵詞:Elasto-plasticFinite ElementAnisotropic SheetDrawingDegenerated shell element
相關次數:
  • 被引用被引用:3
  • 點閱點閱:495
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:1
本文採用Prandtl-Reuss塑流法則和Hill的降伏條件,結合有限變形理論及Updated Lagrangian Formulation(ULF)的觀念建立一增量型彈塑性大變形三維有限元素分析模式,並利用廣義之 法則處理板金成形時,元素之降伏、最大容許應變增量、最大容許旋轉增量、工件與模具間邊界節點之接觸或分離等問題。此分析程式模擬等向性與異向性金屬胚料引伸成形之製程,在三維模式下,模擬金屬胚料成形時沖頭負荷與衝程關係、CPU運算時間、變形歷程、耳緣成形、厚度分佈,以及各變形歷程應力與應變分佈關係,並與圓杯引伸成形實驗之實驗數據做比較,以驗證本論文所發展的彈塑性有限元素分析程式之可信度及精確度。
本文有限元素分析是採用四節點四邊形退化殼元素(degenerated shell element),所推導之形狀函數偶合入剛性矩陣中,組成有限元素之分析模式。經由圓杯引伸之異向性圓形胚料數值模擬與實驗之沖頭負荷與衝程關係及工件厚度分佈之比較,顯示異向性數值分析與實驗結果吻合,故本彈塑性大變形有限元素分析程式可合理的模擬圓杯引伸成形之製程。
A methodology for formulating an elasto-plastic three-dimensional finite element model, which is based on Prandl-Reuss flow rule and Hill''s yield criterion respectively, associated with an Updated Lagrangian Formulation, is developed to simulate isotropic and anisotropic sheet metal forming process. An extended algorithm is proposed to formulate the boundary condition, such as nodal penetration and separation, strain increment and rotation increment, and altered elasto-plastic state of material. Under the model of three-dimensions, the numerical simulation results include relationship between the punch load and punch displacement, CPU time, the earing contour, the variation of sheet thickness, deformation diagrams in different forming stages, the distribution of stress and strain and so on. Then, comparison between the simulation and experimental data can be used to verify the reliability and accuracy of the finite element program developed in this thesis.
The shape function derived from a four-node quadrilateral degenerated shell element is associated into the stiffness matrix to constitute the finite element model. This study examined the numerical simulation on cylindrical cup drawing of anisotropic circular blank; and the experiments on the relationship between punch load and punch displacement; and the thickness distribution of work pieces. The findings of numerical simulation and experimental data indicated consistence. Therefore, the elasto-plastic large deformation finite element program can reasonably simulate cylindrical cup drawing process.
第一章 緒論 -------------------------------------------------- 1
1.1 前言 ------------------------------------------------- 1
1.2 研究動機與目的 --------------------------------------- 1
1.3 文獻回顧 --------------------------------------------- 2
1.4 論文之構成 ------------------------------------------- 5
第二章 基本理論 ---------------------------------------------- 7
2.1 基本假設 --------------------------------------------- 7
2.2 有限元素之應變與應變率 ------------------------------- 7
2.3 有限變形之應力與應率力 ------------------------------ 10
2.4 有限變形之Total Lagrangian Formulation -------------- 14
2.5 有限變形之Update Lagrangian Formulation ------------- 17
2.6 材料之彈塑性構成關係式 ------------------------------ 18
第三章 有限元素分析 ----------------------------------------- 26
3.1 簡介 ------------------------------------------------ 26
3.2 虛速度原理的離散化 ---------------------------------- 28
3.3 退化殼元素(Degenerated Shell Element)之分析 ------- 29
3.4 不同積分法則推導退化殼元素之剛性矩陣 ---------------- 31
3.5 摩擦處理 -------------------------------------------- 33
3.6 廣義 法之增量步驟的計算 ----------------------------- 36
第四章 圓杯引伸實驗與數值模擬分析 --------------------------- 42
4.1 邊界條件 -------------------------------------------- 42
4.2 材料參數與實驗數據 ---------------------------------- 42
4.3 數值模擬分析 ---------------------------------------- 43
4.4 數值分析與實驗結果之比較 ---------------------------- 45
4.4.1 沖頭負荷之比較 -------------------------------- 45
4.4.2 CPU運算時間之比較 ----------------------------- 46
4.4.3 異向性材料之模擬分析 -------------------------- 47
4.5 圓杯引伸成形之分析 ---------------------------------- 47
4.5.1 圓杯引伸成形歷程之比較 ------------------------ 48
4.5.2 耳緣成形之分析 -------------------------------- 48
4.5.3 厚度分佈之比較 -------------------------------- 49
4.5.4 應力分佈之比較 -------------------------------- 50
4.5.5 應變分佈之比較 -------------------------------- 51
第五章 結論 ------------------------------------------------- 87
5.1 結論 ------------------------------------------------ 87
5.2 未來展望 -------------------------------------------- 88
參考文獻 ---------------------------------------------------- 90
符號索引 ---------------------------------------------------- 94
1. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, London (1950).
2. Yamada, Y., Yoshimura, N. and Sakurai, T., “Plastic Stress Strain Matrix and its Application for the Solution of Elastic-Plastic Problem by the Finite Element Method ”, Int. J. Mech. Sci., Vol. 10, pp. 343-354 (1968).
3. Wang, N. M., “Large Plastic Deformation of a Circular Sheet Caused by Punch Stretching”, Journal of Applied Mechanics, June, pp. 431- 440 (1970).
4. Lin, D. W., Daniel, D. and Jonas, J. J., “Simulation of Earing in Texture Materials”, Materials Science and Engineering, Vol. A131, pp. 161-170 (1991).
5. Makinouchi, A., Nakamachi, E. and Nakagawa, T., “Development of CAE System for Auto-Body Panel Forming Die Design by Using 2-D and 3-D FEM”, CIRP Annals, Vol. 40, No. 1, pp. 307-310 (1991).
6. Makinouchi, A. and Kawka, M., “Process Simulation in Sheet Metal Forming”, Journal of Materials Processing Technology, Vol. 46, pp. 291-307 (1994).
7. Kawka, M. and Makinouchi, A., “Shell-Element Formulation in the Static Explicit FEM Code for the Simulation of Sheet Stamping”, Journal of Materials Processing Technology, Vol. 50, pp. 105-115 (1995).
8. Santos, A. and Makinouchi, A., “Contact Strategies to Deal with Different Tool Descriptions in Static Explicit FEM for 3-D Sheet-Metal Forming Simulation”, Journal of Materials Processing Technology, Vol. 50, pp. 279-291 (1995).
9. Nakagawa, T., Makinouchi, A., Wei, J. and Shimizu, T., “Application of Laser Stereolithography in FE Sheet-Metal Forming Simulation”, Journal of Materials Processing Technology, Vol. 50, pp. 318-323 (1995).
10. Danckert, J., “Experimental Investigation of a Square-Cup Deep —Drawing Process”, Journal of Materials Processing Technology, Vol. 50, pp. 375-384 (1995).
11. Jung, D. W., Song, I. S. and Yang, D. Y., “An Improve Method for the Application of Blank-Holding Force Considering the Sheet Thickness in the Deep-Drawing Simulation of Planar Anisotropic Sheet”, Journal of Materials Processing Technology, Vol. 52, pp. 472-488 (1995).
12. Kawka, M. and Makinouchi, A., “Plastic Anisotropy in FEM Analysis Using Degenerated Solid Element”, Journal of Materials Processing Technology, Vol. 60, pp. 239-242 (1996).
13. Makinouchi, A., Teodosiu, C. and Nakagawa, T., “Advance in FEM Simulation and its Related Technologies in Sheet Metal Forming”, CIRP Annals - Manufacturing Technology, Vol. 47, No. 2, pp. 641-649 (1998).
14. Nikishkov, G.P., Kawka, M., Makinouchi, A., Yagawa, G. and Yoshimura, S., “Porting an Industrial Sheet Metal Forming Code to a Distributed Memory Parallel Computer”, Computers and Structures, Vol. 67, No. 6, pp. 439-449 (1998).
15. Zaky, A. M., Nassr, A. B. and EI-Sebaie, M. G., “Optimum Blank Shape of Cylindrical Cups in Deep Drawing of Anisotropic Sheet Metals”, Journal of Materials Processing Technology, Vol. 76, pp. 203-211 (1998).
16. Manabe, K., Yang, M. and Yoshihara, S. “Artificial Intelligence Identification of Process Parameter and Adaptive Control System for Deep-Drawing Process”, Journal of Materials Processing Technology, Vol. 80-81, pp. 421-426 (1998).
17. McMeeking, R. M. and Rice, J. R., “Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation”, International Journal of Solids and Structures, Vol. 11, No. 5, pp. 601-616 (1975).
18. Dhatt, G. and Touzot, G., The Finite Element Method Displayed, Chichester, New York, Brisbane, Toronto, Singapore, John Wiley and Sons (1984).
19. IRONS, B. M. and ZIENKIEWICZ, O. C., “Analysis of Thick and Thin Shell Structures by Curved Finite Elements”, International Journal for Numerical Methods in Engineering, Vol. 2, No. 3, pp. 419-451 (1970).
20. Hughes, T. J. R. and Liu, W. K., “Nonlinear Finite Element Analysis of Shells : Part I. Three-Dimensional Shells”, Computer Methods in Applied Mechanics and Engineering, Vol. 26, No. 3, pp. 331-362 (1981)
21. Hughes, T. J. R., Cohen, M. and Haroun, M., “Reduced and Selective Integration Techniques in the Finite Element Analysis of Plates”, Nuclear Engineering and Design, Vol. 46, pp. 203-222 (1978).
22. 李經綸, “金屬板材引伸及再引伸成形製程之研究”, 國立台灣科技大學機械
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊