跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:覃尉宜
研究生(外文):Wai-Yee Thum
論文名稱:p38Mitogen-ActivatedProteinKinase在過度醣化最終產物誘導RAW264.7巨噬細胞表現環氧酵素-2所扮演的角色
論文名稱(外文):Involvement of p38 Mitogen-Activated Protein Kinase in Advanced Glycosylation End Products-Induced Cyclooxygenase-2 Expression in RAW 264.7 Macrophages
指導教授:李宏謨李宏謨引用關係
指導教授(外文):Horng-Mo Lee
學位類別:碩士
校院名稱:台北醫學院
系所名稱:生物醫學技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:過度醣化最終產物環氧酵素-2p38 Mitogen-activated protein kinaseRAW 264.7巨噬細胞
外文關鍵詞:Advanced glycosylation end productsCyclooxygenase-2p38 Mitogen-activated protein kinaseRAW 264.7 cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
過度醣化最終產物(advanced glycosylation end products, AGEs)被認為與老化及長期糖尿病病人體內所形成之蛋白質結構改變、功能異常有關。在本篇論文中,我們將大白鼠RAW 264.7巨噬細胞給予poly-L-lysine (PLL)-AGEs處理以探討環氧酵素-2 (cyclooxygenase-2, COX-2)蛋白的表現。在外加花生四烯酸(arachidonic acid)的情況下測量前列腺素E2 (prostaglandin E2, PGE2)的產量可發現PLL-AGEs在RAW 264.7巨噬細胞裡可促使環氧酵素-2活性呈劑量、時間依賴性的增加。PLL-AGEs亦可引發環氧酵素-2蛋白的表現,然而此作用並不影響環氧酵素-1 (cyclooxygenase-1, COX-1)蛋白的表現。Gamma-glutamylcysteine synthetase的抑制劑─L-buthionine-[S, R]-sulfoximine (BSO)或glutathione的前驅物─L-nitro-acetyl-cysteine (L-NAC)並不會影響PLL-AGEs刺激環氧酵素-2蛋白的表現,表示PLL-AGEs所引發之環氧酵素-2蛋白的表現並不源自於氧化壓力。另外,環氧酵素-2蛋白的表現也不受一氧化氮合成酶(nitric oxide synthase, NOS)之競爭型抑制劑─L-gamma-nitro-L-arginine methyl ester (L-NAME)以及脂多醣體(lipopolysacchride, LPS)之抑制劑─polymyxin B所抑制,表示此作用也不是經由誘導型一氧化氮合成酶的誘導或脂多醣體的污染而來。Tyrosine kinase的抑制劑─genistein和tyrphostin AG 126以及p38 mitogen-activated protein kinase (MAPK)的抑制劑─SB 203580可以抑制PLL-AGEs誘導環氧酵素-2之蛋白表現,但Ras的抑制劑─FPT II和MEK的抑制劑─PD 98059對PLL-AGEs所誘導之環氧酵素-2蛋白表現並沒有任何作用。利用PLL-AGEs刺激RAW 264.7巨噬細胞可活化p38 MAPK,此反應可被genistein和SB 203580所抑制。綜合以上結果可知protein tyrosine kinase及p38 MAPK的活化的確參與PLL-AGEs誘導環氧酵素-2蛋白表現之訊號傳遞路徑。
Advanced glycosylation end products (AGEs) have been implicated in the structural and functional alterations of proteins that occur during aging and long-term diabetes. In the present study, murine RAW 264.7 macrophages were incubated with poly-L-lysine (PLL)-AGEs to examine cyclooxygenase-2 (COX-2) protein expression. Treatment of RAW 264.7 cells with PLL-AGEs caused a dose-dependent increase in COX activity as reflected by PGE2 secretion (measured in the presence of exogenous arachidonic acid). Furthermore, treatment of RAW 264.7 cells with PLL-AGEs induced COX-2 but not COX-1 expression. The induction was affected by neither L-buthionine-[S, R]-sulfoximine (BSO), a gamma-glutamylcysteine synthetase inhibitor, nor by L-nitro-acetyl-cysteine (L-NAC), a known glutathione precursor, suggesting that AGEs-induced COX-2 expression is not due to reactive oxygen species. Moreover, COX-2 expression was affected by neither N-gamma-nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of nitric oxide synthase (NOS), nor polymyxin B, a lipopolysaccharide (LPS) inhibitor, suggesting that COX-2 induction is not secondary to iNOS induction or LPS contamination. The tyrosine kinase inhibitor, genistein and tyrphostin AG 126, and the p38 mitogen-activated protein kinase (MAPK) inhibitor, SB 203580, inhibited PLL-AGEs-induced COX-2 expression, while the Ras inhibitor, FPT inhibitor II, and the MEK inhibitor, PD 98059, had no effect on PLL-AGEs-induced COX-2 expression. Incubation of RAW 264.7 cells with PLL-AGEs resulted in activation of p38 MAPK, and this activation was suppressed by genistein and SB 203580. Taken together, our results suggest that activation of protein tyrosine kinase and p38 MAPK is involved in AGEs-induced COX-2 expression in RAW 264.7 macrophages.

目錄 (Table of Contents)I
圖目錄 (List of Figures)III
縮寫表 (List of Abbreviations)V
中文摘要1
英文摘要3
第一章 前言 (Chapter 1 Introduction)5
壹、研究目的6
貳、文獻回顧8
一、過度醣化最終產物(Advanced glycosylation end products, AGEs) 8
二、前列腺素(Prostaglandins, PGs)10
三、環氧酵素(cyclooxygenase, COX)12
四、與過度醣化最終產物相關之訊號傳遞路徑14
五、與環氧酵素-2相關之訊號傳遞路徑14
第二章實驗儀器與材料 (Chapter 2 Experimental Instruments & Materials)17
壹、實驗儀器18
貳、實驗材料19
第三章 實驗方法 (Chapter 3 Experimental Methods) 22
一、PLL-AGEs的製備23
二、大白鼠巨噬細胞株RAW 264.7的培養23
三、前列腺素E2的測定24
四、西方墨點分析法24
五、p38 MAPK活性的測定25
六、數據分析26
第四章 實驗結果 (Chapter 4 Results)27
一、PLL-AGEs刺激環氧酵素活性和環氧酵素-2蛋白表現 28
二、PLL-AGEs刺激環氧酵素-2表現不是歸因於誘導型一氧化氮
合成酶、氧化壓力的產生或脂多醣體的污染33
三、PLL-AGE誘導環氧酵素活性和環氧酵素-2表現之作用機轉39
四、PLL-AGEs活化p38 Mitogen-Activated Protein Kinase47
第五章 討論 (Chapter 5 Discussion)50
第六章 參考文獻 (Chapter 6 References)55
圖目錄 (List of Figures)
Fig. 1. Concentration-dependent effects of poly-L-lysine-advanced glycosylation end products (PLL-AGEs) on COX activity and COX-2 expression in RAW 264.7 macrophages.29
Fig. 2. Time—dependent effects of PLL-AGEs on COX activity and COX-2 expression in RAW 264.7 macrophages.31
Fig. 3. Effects of N-gamma-nitro-L-arginine methyl ester (L-NAME), L-buthionine-[S, R]-sulfoximine (BSO) and L-nitro-acetyl-cysteine (L-NAC) on COX-2 expression induced by PLL-AGEs in RAW 264.7 macrophages.35
Fig. 4. Comparison between the effects of polymyxin B (PolB) on COX-2 expression induced by lipopolysaccharide (LPS) and PLL-AGEs in RAW 264.7 macrophages.37
Fig. 5. Effects of genistein and tyrphostin on COX activity and COX-2 expression induced by PLL-AGEs in RAW 264.7 macrophages. 40
Fig. 6. Effects of SB 203580 on COX activity and COX-2 expression induced by PLL-AGEs in RAW 264.7 macrophages. 43
Fig. 7. Effects of FPT inhibitor II (FPT) and PD 98059 (PD) on COX-2 expression induced by PLL-AGEs in RAW 264.7 macrophages. 45
Fig. 8. Effects of genistein and SB 203580 on p38 mitogen-activated protein kinase (MAPK) activity induced by PLL-AGEs in RAW 264.7 macrophages.48

Abel, M., Ritthaler, U., Zhang, Y., Deng, Y., Schmidt, A. M., Greten, J., Sernau, T., Wahl, P., Andrassy, K., and Ritz, E., 1995. Expression of receptors for advanced glycosylated end-products in renal disease. Nephrol. Dial. Transplant. 10, 1662-1667.
Amore, A., Cirina, P., Mitola, S., Peruzzi, L., Gianolio, B., Rabbone, I., Sacchetti, C., Cerutti, F., Grillo, C., and Coppo, R., 1997. Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells. Kidney Int. 51, 27-35.
Androgue, H. J., 1992. Glucose homeostasis and the kidney. Kidney Int. 42, 1266-1282.
Badawi, A. F., El-Sohemy, A., Stephen, L. L., Ghoshal, A. K., and Archer, M. C., 1998. The effect of dietary n-3 and n-6 polyunsaturated fatty acids on the expression of cyclooxygenase 1 and 2 and levels of p21 ras in rat mammary glands. Carcinogenesis 19, 905-910.
Baker, C. S., Hall, R. J., Evans, T. J., Pomerance, A., Maclouf, J., Creminon, C., Yacoub, M. H., and Polak, J. M., 1999. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler. Thromb. Vasc. Biol. 19, 646-655.
Brett, J., Schmidt, A. M., Yan, S.D., Zou, Y. S., Weidman, E., Neeper, M., Przysiecki, C., Shaw, A., Migheli, A., and Stern, D., 1993. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143, 1699-1712.
Brownlee, M., 1991. Glycosylation products as toxic mediators of diabetic complications. Annu. Rev. Med. 42, 159-166.
Brownlee, M., 1994. Lilly lecture 1993. Glycation and diabetic complication. Diabetes 43, 836-841.
Brownlee, M., Vlassara, H., and Cerami, A., 1984. Nonenzymatic glycosylation and the pathogenesis of diabetic complication. Ann. Intern. Med. 101, 527-537.
Caivano, M. and Cohen, P., 2000. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW 264 macrophages. J. Immunol. 164, 3018-3025.
Ceriello, A., 1999. Hyperglycemia: the bridge between non-enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diabetes, Nutrition & Metabolism - Clinical & Experimental. 12, 42-46.
Chen, C., Chen, Y. H., and Lin, W. W., 1999. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunol. 97, 124-129.
Cohen, M. P. and Ziyadeh, F.N., 1996. Role of Amdori-modified nonenzymatically glycated serum proteins in pathogenesis of diabetic nephropathy. J. Am. Soc. Nephrol. 7, 183-190.
Corbett J. A., Hwon G., Turk J., and McDaniel M. L., 1993. IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry 32, 13767-13770.
Denhardt, D. T., 1996. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signaling. Biochem. J. 318, 729-747.
Dolhofer-Bliesener, R., Lechner, B., Deppisch, R., Ritz, E., and Gerbitz, K. D., 1995. Immunological determination of advanced glycosylation end-products in human blood and urine. Nephrol. Dial. Transplant 10, 657-664.
Dolhofer-Bliesener, R., Lechner, B., and Gerbitz, K. D., 1996. Possible significance of advanced glycation end products in serum in end-stage renal disease and in late complication of diabetes. Eur. J. Clin. Chem. Clin. Biochem. 34, 355-361.
Dunn, J. A., Patrick, J. S., Thorpe, S. R., and Baynes, J. W. A., 1989. Oxidation of glycated proteins: Age-dependent accumulation of N-(carboxy-methyl)lysinein lens proteins. Biochemistry 28, 9464-9468.
Durancy, N., Munch, G., Michel, T., and Riederer, P., 1999. Investigations on oxidative stress and therapeutical implications in dementia. Eur. Arch. Psychiatry Clin. Neurosci. 249, 68-73.
Frid, M. G., Aldashev, A. A., Nemenoff, R. A., Higashito, R., Westcott, J. Y., and Stenmark, K. R., 1999. Subendothelial cells from normal bovine arteries exhibit autonomous growth and constitutively activated intracellular signaling. Arterioscler. Thromb. Vasc. Biol. 19, 2884-2893.
Fu, M. X., Wells-Knecht, K. J., Blackledge, J. A., Lyons, T. J., Thorpe, S. R., and Baynes, J. W., 1994. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stage of the Maillard reaction. Diabetes 43, 676-683.
Funk, C. D., Funk, L. B., Kennedy, M. E., Pong, A. S., and Fitzgerald, G. A., 1991. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5, 2304-2312.
Goppelt-Struebe, M., Fickel, S., and Reiser, C. O., 2000. The platelet- derived-growth-factor receptor, not the epidermal-growth-factor receptor, is used by lysophosphatidic acid to activate p42/44 mitogen-activated protein kinase and to induce prostaglandin G/H synthase-2 in mesangial cells. Biochem. J. 345, 217-224.
Guan, Z., Buckman, S. Y., Baier, L. D., and Morrison, A. R., 1998. IGF-I and insulin amplify IL-1 beta-induced nitric oxide and prostaglandin biosynthesis. Am. J. Physiol. 274, F673-679.
Guastadisegni, C., Minghetti, L., Nicolini, A., Polazzi, E., Ade, P., Balduzzi, M., and Levi, G., 1997. Prostaglandin E2 synthesis is differentially affected by reactive nitrogen intermediates in cultured rat microglia and RAW 264.7 cells. FEBS Lett. 413, 314-318.
Hamberg, M. and Samuelsson, B., 1967. On the mechanism of the biosynthesis of prostaglandins E-1 and F-1-alpha. J. Biol. Chem. 242, 5336-5343.
Hangaishi, M., Taguchi, J., Miyata, T., Ikari, Y., Togo, M., Hashimoto, Y., Watanabe, T., Kimura, S., Kurokawa, K., and Ohno, M., 1998. Increased aggregation of human platelets produced by advanced glycation end products in vitro. Biochem. Biophys. Res. Commun. 248, 285-292.
Hasegawa, G., Nakano, K., Sawada, M., Uno, K., Shibayama, Y., Ienaga, K., and Kondo, M., 1991. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 40, 1007-1012.
Hayase, F., Nagaraj, R. H., Miyata, S., Njoroge, F. G., and Monnier, V. M., 1989. Aging of proteins: Immunological detection of a glucose- derived pyrrole formed during Maillard reaction in vivo. J. Biol. Chem. 264, 3758-3764.
Hori, O., Yan, S. D., Ogawa, S., Kuwabara, K., Matsumoto, M., Stern, D., and Schmidt, A. M., 1996. The receptor for advanced glycation end-products has a central role in mediating the effects of advanced glycation end-products on the development of vascular disease in diabetes mellitus. Nephrol. Dial. Transplant. 11, 13-16.
Hla, T. and Neilson, K., 1992. Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. U.S.A. 89, 7384-7388.
Huttunen, H. J., Fages, C., and Rauvala, H., 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J. Biol. Chem. 274, 19919-19924.
Ido, Y., Kilo, C., and Williamson, J. R., 1996. Interactions between the sorbitol pathway, non-enzymatic glycation, and diabetic vascular dysfunction. Nephrol. Dial. Transplant. 11, 72-75.
Imani, F., Horii, Y., Suthanthiran, M., Skolnik, E. Y., Makita, Z., Sharma, V., Sehajpal, P., and Vlassara, H., 1993. Advanced glycosylation end product-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon gamma: Role in tissue remodeling. J. Exp. Med. 178, 2165-2172.
Inoue, H., Yokoyama C., Hara, S., Tone, Y., and Tanabe, T., 1995. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J. Biol. Chem. 270, 24965-24971.
Irvine, R. F., 1982. How is the level of free arachidonic acid controlled in mammalian cells? Biochem. J. 204, 3-16.
Isoherranen, K., Punnonen, K., Jansen, C., and Uotila, P., 1999. Ultraviolet irradiation induces cyclooxygenase-2 expression in keratinocytes. Br. J. Dermatol. 140, 1017-1022.
Kent, M. J. C., Light, N. D., and Bailey, A. J., 1985. Evidence for glucose-mediated covalent cross-linking after glycosylation in vitro. Biochem. J. 225, 745-752.
Khechai, F., Ollivier,V., Bridey, F., Amar, M., Hakim, J., and de Prost, D., 1997. Effect of advanced glycation end product-modified albumin on tissue factor expression by monocytes. Role of oxidant stress and protein tyrosine kinase activation. Arterioscler. Thromb. Vasc. Biol. 17, 2885-2890.
Kim, Y. and Fischer, S. M., 1998. Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J. Biol. Chem. 273, 27686-27694.
Kujubu, D. A., Fletcher, B. S., Varnum, B. C., Lim, R. W., and Herschman, H. R., 1991. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/ cyclooxygenase homologue. J. Biol. Chem. 266, 12866-12872.
Kujubu, D. A. and Herschman, H. R., 1992. Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene. J. Biol. Chem. 267, 7991-7994.
Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., and Schmidt, A. M., 1997. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272, 17810-17814.
Lee, S. H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D., and Hwang, D., 1992. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 267, 25934-25938.
Lin, C. H., Sheu, S. Y., Lee, H. M., Ho, Y. S., Lee, W. S., Ko W. C., and Sheu, J. R., 2000. Involvement of protein kinase C-gamma in IL-1-beta-induced cyclooxygenase-2 expression in human pulmonary epithelial cells. Mol. Pharmacol. 57, 36-43.
Lopes-Virella, M. F. and Virella, G., 1996. Cytokines, modified lipoproteins, and arteriosclerosis in diabetes. Diabetes 45, S40-S44 (suppl. 3).
Loske, C., Neumann, A., Cunningham, A. M., Nichol, K., Schinzel, R., Riederer, P., and Munch, G., 1998. Cytotoxicity of advanced glycation end products is mediated by oxidative stress. J. Neural Transm. (Budapest) 105, 1005-1015.
Maier, J. A., Hla, T., and Maciag, T., 1990. Cyclooxygenase is an mediated-early gene induced by interleukin-1 in human endothelial cells. J. Biol. Chem. 265, 10805-10808.
Makita, Z., Vlassara, H., Rayfield, E. J., Cartwright, K., Friedman E. A., Rodly, R., Cerami, A., and Bucala, R., 1992. Hemaglobin-AGE: A circulating marker of advanced glycosylation. Science 258, 651-653.
Marnett, L. J., Wright, T. L., Crews, B. C., Tannenbaum, S. R., and Morrow, J. D., 2000. Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. J. Biol. Chem. 275, 13427-13430.
Martinez, J., Sanchez, T., and Moreno, J. J., 2000. Regulation of prostaglandin E2 production by the superoxide radical and nitric oxide in mouse peritoneal macrophages. Free Radic. Res. 32, 303-311.
Masferrer, J. L., Seibert, K., Zweifel, B., and Needleman, P., 1992. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc. Natl. Acad. Sci. U.S.A. 89, 3917-3921.
Masferrer, J. L., Zweifel, B. S., Seibert, K., and Needleman, P., 1990. Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice. J. Clin. Invest. 86, 1375-1379.
Merlie, J. P., Fagan, D., Mudd, J., and Needleman, P., 1988. Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase). J. Biol. Chem. 263, 3550-3553.
Misko, T. P., Trotter, J. L., and Cross, A. H., 1995. Mediation of inflammation by encephalitogenic cells: interferon gamma induction of nitric oxide synthase and cyclooxygenase-2. J. Neuroimmunol. 61, 195-204.
Mitchell, J. A., Larkin, S., and Williams, T. J., 1995. Cyclooxygenase-2: Regulation and relevance in inflammation. Biochem. Pharmacol. 50, 1535-1542.
Miyata, T., Oda, O., Inagi, I., Iida, Y., Araki, N., Yamada, N., Horiuchi, S., Taniguchi, N., Maeda, K., and Kinoshita, T., 1993. Beta2-microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J. Clin. Invest. 92, 1243-1252.
Mohamed, A. K., Bierhaus, A., Schiekofer, S., Tritschler, H., Ziegler, R., and Nawroth, P. P., 1999. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 10, 157-167.
Moldeus, P. and Cotgreave, I. A., 1994. N-acetylcysteine. Method Enzymol. 234, 482-492.
Monnier, V. M., Sell, D. R., Nagaraj, R. H., Miyata, S., Grandhee, S., Odetti, P., and Ibrahim, S. A., 1992. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 41, S36-S41 (suppl. 2).
Morris, J. K. and Richards, J. S., 1996. An E-box region within the prostaglandin endoperoxide synthase-2 (PGS-2) promoter is required for transcription in rat ovarian granulosa cells. J. Biol. Chem. 271, 16633-16643.
Munch, G., Schinzel, R., Loske, C., Wong, A., Durancy, N., Li, J. J., Vlassara, H., Smith, M. A., Perry, G., and Riederer, P., 1998. Alzheimer's disease--synergistic effects of glucose deficit, oxidative stress and advanced glycation end products. J. Neural Transm. (Budapest) 105, 439-461.
Niwa, T., Katsuzaki, T., Ishizaki, Y., Hayase, F., Miyazaki, T., Uematsu, T., Tatemichi, N., and Takei, Y., 1997. Imidazolone, a novel advanced glycation end product, is present at high levels in kidneys of rats with streptozotocin-induced diabetes. FEBS Lett. 407, 297-302.
O’Banion, M. K., Sadowski, H. B., Winn, V., and Young, D. A., 1991. A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J. Biol. Chem. 266, 23261-23267.
O’Neill, G. P. and Ford-Hutchinson, A. W., 1993. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissue. FEBS Lett. 330, 156-160.
Paul, A., Cuenda, A., Bryant, C. E., Murray, J., Chilvers, S. R., Cohen, P., Gould, G. W., and Plevin, R., 1999. Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide- mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW 264.7. Cell. Signal. 11, 491-497.
Pongor, S., Ulrich, P. C., Benesath, F. A., and Cerami, A., 1984. Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc. Natl. Acad. Sci. U.S.A. 81, 2684-2688.
Ritz, E., Deppisch, R., and Nawroth, P., 1994. Toxicity of uraemia─does it come of age? Nephrol. Dial. Transplant. 9, 1-2.
Robertson, R. P. and Chen, M., 1977. A role of prostaglandin E in defective insulin secretion and carbohydrate intolerance in diabetes mellitus. J. Clin. Invest. 60, 747-753.
Rojas, A., Caveda, L., Romay, C., Lopez, E., Valdes, S., Padron, J., Glaria, L., Martinez, O., and Delgado, R., 1996. Effect of advanced glycosylation end products on the induction of nitric oxide synthase in murine macrophages. Biochem. Biophys. Res. Commun. 22, 358-362.
Rosen, G. D., Birkenmeier, T. M., Raz, A., and Holtzman, H. J., 1989. Identification of a cyclooxygenase-related gene and its potential role in prostaglandin formation. Biochem. Biophys. Res. Commun. 164, 1358-1365.
Salvemini D., Misko T. P., Masferrer J. L., Sierbert K., Currie M. G., and Needleman P., 1993. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. U.S.A. 90, 7240-7244.
Schmidt, A. M., Weidman, E., Lalla, E., Yan, S. D., Hori, O., Cao, R., Brett, J. G., and Lamster, I. B., 1996. Advanced glycation end products (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. J. Periodontal Res. 31, 508-515.
Schmidt, A. M., Yan, S. D., Brett, J., Mora, R., Nowygrod, R., and Stern, D., 1993. Regulation of human mononuclear phagocyte migration by cell-surface-binding proteins for advanced glycation end products. J. Clin. Invest. 91, 2155-2168.
Scivittaro, V., Ganz, M. B., and Weiss, M. F., 2000. AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells. Am. J. Physiol. 278, F676-683.
Sell, D. R. and Monnier, V. M., 1990. End-stage renal disease and diabetics catalyze the formation of a pentose-derived cross-link from aging human collagen. J. Clin. Invest. 85, 380-384.
Serou, M. J., DeCoster, M. A., and Bazan, N. G., 1999. Interleukin-1 beta activates expression of cyclooxygenase-2 and inducible nitric oxide synthase in primary hippocampal neuronal culture: platelet-activating factor as a preferential mediator of cyclooxygenase-2 expression. J. Neurosci. Res. 58, 593-598.
Simm, A., Munch, G., Seif, F., Schenk, O., Heidland, A., Richter, H., Vamvakas, S., and Schinzel, R., 1997. Advanced glycation end products stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett. 410, 481-484.
Skolnik, E. Y., Yang, S. Z., Makita, Z., Radoff, S., Kirstein, M., and Vlassara, H., 1991. Human and rat mesangial cell receptors for glucose-modified proteins: Potential role in kidney tissue remodeling and diabetic nephrolpathy. J. Exp. Med. 174, 931-939.
Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S. D., Sterm, D., Sayre, L. M., Monnier, V. M., and Perry, G., 1994. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. U.S.A. 91, 5710-5714.
Smith, W. L. and Dewitt, D. L., 1996. Prostaglandin endoperoxide H synthases (cyclooxygenase)-1 and -2. Adv. Immunol. 62, 167-215.
Smith, W. L., Marnett, L. J., and DeWitt, D. L., 1991. Prostaglandin and thromboxane biosynthesis. Pharmacol. Ther. 49, 153-179.
Subbaramaiah, K., Telang, N., Ramonetti, J. T., Araki, R., DeVito, B., Weksler, B. B., and Dannenberg, A. J., 1996. Transcription of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells. Cancer Res. 56, 4424-4429.
Vane, J. R., 1971. Inhibition of prostaglandin synthesis as a mechanism of action of the aspirin-like drugs. Nature New Biol. 231, 232-235.
Vane, J., 1994. Towards a better aspirin. Nature 367, 215-216.
Vitek, M. P., Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K., and Cerami, A., 1994. Advanced glycation end products contribute to amyloidosis in Alzhrimer disease. Proc. Natl. Acad. Sci. U.S.A. 91, 4766-4770.
Vlassara, H., Fuh, H., Makita, Z., Krungkrai, S., Cerami, A., and Bucula, R., 1992. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc. Natl. Acad. Sci. U.S.A. 89, 12043-12047.
Vlassara, H., Li, Y. M., Imani, F., Wojciechowicz, D.,Yang, Z., Liu, F. T., and Cerami, A., 1995. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): A new member of the AGE-receptor complex. Mol. Med. 1, 634-646.
Wautier, J. L., Zoukourian, C., Chappey, O., Wautier, M. P., Guillausseau, P. J., Cao, R., Hori, O., Stern, D., and Schmidt, A. M., 1996. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J. Clin. Invest. 97, 238-243.
Xie, W., Chapman, J. G., Robertson, D. L., Erikson, R. L. and Simons, D., 1991. Expression of mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. U.S.A. 88, 2692-2696.
Xie, W., Fletcher, B. S., Andersen, R. D., and Herschman, H. R., 1994. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element. Mol. Cell. Biol. 14, 6531-6539.
Yamaki, K., Yonezawa, T., and Ohuchi, K., 2000. Signal transduction cascade in strausporine-induced prostaglandin E(2) production by rat peritoneal macrophages. J. Pharmacol. Exp. Ther. 293, 206-213.
Yamamoto, K., Arakawa, T., Ueda, N., and Yamamoto, S., 1995. Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J. Biol. Chem. 270, 31315-31320.
Yan, S. D., Stern, D., and Schmidt, A. M., 1997. What’s the RAGE? The receptor for advanced glycation end products (RAGE) and the dark side of glucose. Eur. J. Clin. Invest. 27, 179-181.
Yan, Z., Subbaramaiah, K., Camilli, T., Zhang, F., Tanabe, T., McCaffrey, T. A., Dannenberg, A. J., and Weksler, B. B., 2000. Benzo[a]pyrene induces the transcription of cyclooxygenase-2 in vascular smooth muscle cells. Evidence for the involvement of extracellular signal-regulated kinase and NF-kappaB. J. Biol. Chem. 275, 4949-4955.
Yucel-Lindberg, T., Ahola, H., Carlstedt-Duke, J., and Modeer, T., 1999. Involvement of tyrosine kinases on cyclooxygenase expression and prostaglandin E2 production in human gingival fibroblast stimulated with interleukin-1beta and epidermal growth factor. Biochem. Biophys. Res. Commun. 257, 528-532.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top