|
Abel, M., Ritthaler, U., Zhang, Y., Deng, Y., Schmidt, A. M., Greten, J., Sernau, T., Wahl, P., Andrassy, K., and Ritz, E., 1995. Expression of receptors for advanced glycosylated end-products in renal disease. Nephrol. Dial. Transplant. 10, 1662-1667. Amore, A., Cirina, P., Mitola, S., Peruzzi, L., Gianolio, B., Rabbone, I., Sacchetti, C., Cerutti, F., Grillo, C., and Coppo, R., 1997. Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells. Kidney Int. 51, 27-35. Androgue, H. J., 1992. Glucose homeostasis and the kidney. Kidney Int. 42, 1266-1282. Badawi, A. F., El-Sohemy, A., Stephen, L. L., Ghoshal, A. K., and Archer, M. C., 1998. The effect of dietary n-3 and n-6 polyunsaturated fatty acids on the expression of cyclooxygenase 1 and 2 and levels of p21 ras in rat mammary glands. Carcinogenesis 19, 905-910. Baker, C. S., Hall, R. J., Evans, T. J., Pomerance, A., Maclouf, J., Creminon, C., Yacoub, M. H., and Polak, J. M., 1999. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler. Thromb. Vasc. Biol. 19, 646-655. Brett, J., Schmidt, A. M., Yan, S.D., Zou, Y. S., Weidman, E., Neeper, M., Przysiecki, C., Shaw, A., Migheli, A., and Stern, D., 1993. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143, 1699-1712. Brownlee, M., 1991. Glycosylation products as toxic mediators of diabetic complications. Annu. Rev. Med. 42, 159-166. Brownlee, M., 1994. Lilly lecture 1993. Glycation and diabetic complication. Diabetes 43, 836-841. Brownlee, M., Vlassara, H., and Cerami, A., 1984. Nonenzymatic glycosylation and the pathogenesis of diabetic complication. Ann. Intern. Med. 101, 527-537. Caivano, M. and Cohen, P., 2000. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in RAW 264 macrophages. J. Immunol. 164, 3018-3025. Ceriello, A., 1999. Hyperglycemia: the bridge between non-enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diabetes, Nutrition & Metabolism - Clinical & Experimental. 12, 42-46. Chen, C., Chen, Y. H., and Lin, W. W., 1999. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunol. 97, 124-129. Cohen, M. P. and Ziyadeh, F.N., 1996. Role of Amdori-modified nonenzymatically glycated serum proteins in pathogenesis of diabetic nephropathy. J. Am. Soc. Nephrol. 7, 183-190. Corbett J. A., Hwon G., Turk J., and McDaniel M. L., 1993. IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry 32, 13767-13770. Denhardt, D. T., 1996. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signaling. Biochem. J. 318, 729-747. Dolhofer-Bliesener, R., Lechner, B., Deppisch, R., Ritz, E., and Gerbitz, K. D., 1995. Immunological determination of advanced glycosylation end-products in human blood and urine. Nephrol. Dial. Transplant 10, 657-664. Dolhofer-Bliesener, R., Lechner, B., and Gerbitz, K. D., 1996. Possible significance of advanced glycation end products in serum in end-stage renal disease and in late complication of diabetes. Eur. J. Clin. Chem. Clin. Biochem. 34, 355-361. Dunn, J. A., Patrick, J. S., Thorpe, S. R., and Baynes, J. W. A., 1989. Oxidation of glycated proteins: Age-dependent accumulation of N-(carboxy-methyl)lysinein lens proteins. Biochemistry 28, 9464-9468. Durancy, N., Munch, G., Michel, T., and Riederer, P., 1999. Investigations on oxidative stress and therapeutical implications in dementia. Eur. Arch. Psychiatry Clin. Neurosci. 249, 68-73. Frid, M. G., Aldashev, A. A., Nemenoff, R. A., Higashito, R., Westcott, J. Y., and Stenmark, K. R., 1999. Subendothelial cells from normal bovine arteries exhibit autonomous growth and constitutively activated intracellular signaling. Arterioscler. Thromb. Vasc. Biol. 19, 2884-2893. Fu, M. X., Wells-Knecht, K. J., Blackledge, J. A., Lyons, T. J., Thorpe, S. R., and Baynes, J. W., 1994. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stage of the Maillard reaction. Diabetes 43, 676-683. Funk, C. D., Funk, L. B., Kennedy, M. E., Pong, A. S., and Fitzgerald, G. A., 1991. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5, 2304-2312. Goppelt-Struebe, M., Fickel, S., and Reiser, C. O., 2000. The platelet- derived-growth-factor receptor, not the epidermal-growth-factor receptor, is used by lysophosphatidic acid to activate p42/44 mitogen-activated protein kinase and to induce prostaglandin G/H synthase-2 in mesangial cells. Biochem. J. 345, 217-224. Guan, Z., Buckman, S. Y., Baier, L. D., and Morrison, A. R., 1998. IGF-I and insulin amplify IL-1 beta-induced nitric oxide and prostaglandin biosynthesis. Am. J. Physiol. 274, F673-679. Guastadisegni, C., Minghetti, L., Nicolini, A., Polazzi, E., Ade, P., Balduzzi, M., and Levi, G., 1997. Prostaglandin E2 synthesis is differentially affected by reactive nitrogen intermediates in cultured rat microglia and RAW 264.7 cells. FEBS Lett. 413, 314-318. Hamberg, M. and Samuelsson, B., 1967. On the mechanism of the biosynthesis of prostaglandins E-1 and F-1-alpha. J. Biol. Chem. 242, 5336-5343. Hangaishi, M., Taguchi, J., Miyata, T., Ikari, Y., Togo, M., Hashimoto, Y., Watanabe, T., Kimura, S., Kurokawa, K., and Ohno, M., 1998. Increased aggregation of human platelets produced by advanced glycation end products in vitro. Biochem. Biophys. Res. Commun. 248, 285-292. Hasegawa, G., Nakano, K., Sawada, M., Uno, K., Shibayama, Y., Ienaga, K., and Kondo, M., 1991. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 40, 1007-1012. Hayase, F., Nagaraj, R. H., Miyata, S., Njoroge, F. G., and Monnier, V. M., 1989. Aging of proteins: Immunological detection of a glucose- derived pyrrole formed during Maillard reaction in vivo. J. Biol. Chem. 264, 3758-3764. Hori, O., Yan, S. D., Ogawa, S., Kuwabara, K., Matsumoto, M., Stern, D., and Schmidt, A. M., 1996. The receptor for advanced glycation end-products has a central role in mediating the effects of advanced glycation end-products on the development of vascular disease in diabetes mellitus. Nephrol. Dial. Transplant. 11, 13-16. Hla, T. and Neilson, K., 1992. Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. U.S.A. 89, 7384-7388. Huttunen, H. J., Fages, C., and Rauvala, H., 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J. Biol. Chem. 274, 19919-19924. Ido, Y., Kilo, C., and Williamson, J. R., 1996. Interactions between the sorbitol pathway, non-enzymatic glycation, and diabetic vascular dysfunction. Nephrol. Dial. Transplant. 11, 72-75. Imani, F., Horii, Y., Suthanthiran, M., Skolnik, E. Y., Makita, Z., Sharma, V., Sehajpal, P., and Vlassara, H., 1993. Advanced glycosylation end product-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon gamma: Role in tissue remodeling. J. Exp. Med. 178, 2165-2172. Inoue, H., Yokoyama C., Hara, S., Tone, Y., and Tanabe, T., 1995. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J. Biol. Chem. 270, 24965-24971. Irvine, R. F., 1982. How is the level of free arachidonic acid controlled in mammalian cells? Biochem. J. 204, 3-16. Isoherranen, K., Punnonen, K., Jansen, C., and Uotila, P., 1999. Ultraviolet irradiation induces cyclooxygenase-2 expression in keratinocytes. Br. J. Dermatol. 140, 1017-1022. Kent, M. J. C., Light, N. D., and Bailey, A. J., 1985. Evidence for glucose-mediated covalent cross-linking after glycosylation in vitro. Biochem. J. 225, 745-752. Khechai, F., Ollivier,V., Bridey, F., Amar, M., Hakim, J., and de Prost, D., 1997. Effect of advanced glycation end product-modified albumin on tissue factor expression by monocytes. Role of oxidant stress and protein tyrosine kinase activation. Arterioscler. Thromb. Vasc. Biol. 17, 2885-2890. Kim, Y. and Fischer, S. M., 1998. Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J. Biol. Chem. 273, 27686-27694. Kujubu, D. A., Fletcher, B. S., Varnum, B. C., Lim, R. W., and Herschman, H. R., 1991. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/ cyclooxygenase homologue. J. Biol. Chem. 266, 12866-12872. Kujubu, D. A. and Herschman, H. R., 1992. Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene. J. Biol. Chem. 267, 7991-7994. Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., and Schmidt, A. M., 1997. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272, 17810-17814. Lee, S. H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D., and Hwang, D., 1992. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 267, 25934-25938. Lin, C. H., Sheu, S. Y., Lee, H. M., Ho, Y. S., Lee, W. S., Ko W. C., and Sheu, J. R., 2000. Involvement of protein kinase C-gamma in IL-1-beta-induced cyclooxygenase-2 expression in human pulmonary epithelial cells. Mol. Pharmacol. 57, 36-43. Lopes-Virella, M. F. and Virella, G., 1996. Cytokines, modified lipoproteins, and arteriosclerosis in diabetes. Diabetes 45, S40-S44 (suppl. 3). Loske, C., Neumann, A., Cunningham, A. M., Nichol, K., Schinzel, R., Riederer, P., and Munch, G., 1998. Cytotoxicity of advanced glycation end products is mediated by oxidative stress. J. Neural Transm. (Budapest) 105, 1005-1015. Maier, J. A., Hla, T., and Maciag, T., 1990. Cyclooxygenase is an mediated-early gene induced by interleukin-1 in human endothelial cells. J. Biol. Chem. 265, 10805-10808. Makita, Z., Vlassara, H., Rayfield, E. J., Cartwright, K., Friedman E. A., Rodly, R., Cerami, A., and Bucala, R., 1992. Hemaglobin-AGE: A circulating marker of advanced glycosylation. Science 258, 651-653. Marnett, L. J., Wright, T. L., Crews, B. C., Tannenbaum, S. R., and Morrow, J. D., 2000. Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. J. Biol. Chem. 275, 13427-13430. Martinez, J., Sanchez, T., and Moreno, J. J., 2000. Regulation of prostaglandin E2 production by the superoxide radical and nitric oxide in mouse peritoneal macrophages. Free Radic. Res. 32, 303-311. Masferrer, J. L., Seibert, K., Zweifel, B., and Needleman, P., 1992. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc. Natl. Acad. Sci. U.S.A. 89, 3917-3921. Masferrer, J. L., Zweifel, B. S., Seibert, K., and Needleman, P., 1990. Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice. J. Clin. Invest. 86, 1375-1379. Merlie, J. P., Fagan, D., Mudd, J., and Needleman, P., 1988. Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase). J. Biol. Chem. 263, 3550-3553. Misko, T. P., Trotter, J. L., and Cross, A. H., 1995. Mediation of inflammation by encephalitogenic cells: interferon gamma induction of nitric oxide synthase and cyclooxygenase-2. J. Neuroimmunol. 61, 195-204. Mitchell, J. A., Larkin, S., and Williams, T. J., 1995. Cyclooxygenase-2: Regulation and relevance in inflammation. Biochem. Pharmacol. 50, 1535-1542. Miyata, T., Oda, O., Inagi, I., Iida, Y., Araki, N., Yamada, N., Horiuchi, S., Taniguchi, N., Maeda, K., and Kinoshita, T., 1993. Beta2-microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J. Clin. Invest. 92, 1243-1252. Mohamed, A. K., Bierhaus, A., Schiekofer, S., Tritschler, H., Ziegler, R., and Nawroth, P. P., 1999. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors 10, 157-167. Moldeus, P. and Cotgreave, I. A., 1994. N-acetylcysteine. Method Enzymol. 234, 482-492. Monnier, V. M., Sell, D. R., Nagaraj, R. H., Miyata, S., Grandhee, S., Odetti, P., and Ibrahim, S. A., 1992. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 41, S36-S41 (suppl. 2). Morris, J. K. and Richards, J. S., 1996. An E-box region within the prostaglandin endoperoxide synthase-2 (PGS-2) promoter is required for transcription in rat ovarian granulosa cells. J. Biol. Chem. 271, 16633-16643. Munch, G., Schinzel, R., Loske, C., Wong, A., Durancy, N., Li, J. J., Vlassara, H., Smith, M. A., Perry, G., and Riederer, P., 1998. Alzheimer's disease--synergistic effects of glucose deficit, oxidative stress and advanced glycation end products. J. Neural Transm. (Budapest) 105, 439-461. Niwa, T., Katsuzaki, T., Ishizaki, Y., Hayase, F., Miyazaki, T., Uematsu, T., Tatemichi, N., and Takei, Y., 1997. Imidazolone, a novel advanced glycation end product, is present at high levels in kidneys of rats with streptozotocin-induced diabetes. FEBS Lett. 407, 297-302. O’Banion, M. K., Sadowski, H. B., Winn, V., and Young, D. A., 1991. A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J. Biol. Chem. 266, 23261-23267. O’Neill, G. P. and Ford-Hutchinson, A. W., 1993. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissue. FEBS Lett. 330, 156-160. Paul, A., Cuenda, A., Bryant, C. E., Murray, J., Chilvers, S. R., Cohen, P., Gould, G. W., and Plevin, R., 1999. Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide- mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW 264.7. Cell. Signal. 11, 491-497. Pongor, S., Ulrich, P. C., Benesath, F. A., and Cerami, A., 1984. Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc. Natl. Acad. Sci. U.S.A. 81, 2684-2688. Ritz, E., Deppisch, R., and Nawroth, P., 1994. Toxicity of uraemia─does it come of age? Nephrol. Dial. Transplant. 9, 1-2. Robertson, R. P. and Chen, M., 1977. A role of prostaglandin E in defective insulin secretion and carbohydrate intolerance in diabetes mellitus. J. Clin. Invest. 60, 747-753. Rojas, A., Caveda, L., Romay, C., Lopez, E., Valdes, S., Padron, J., Glaria, L., Martinez, O., and Delgado, R., 1996. Effect of advanced glycosylation end products on the induction of nitric oxide synthase in murine macrophages. Biochem. Biophys. Res. Commun. 22, 358-362. Rosen, G. D., Birkenmeier, T. M., Raz, A., and Holtzman, H. J., 1989. Identification of a cyclooxygenase-related gene and its potential role in prostaglandin formation. Biochem. Biophys. Res. Commun. 164, 1358-1365. Salvemini D., Misko T. P., Masferrer J. L., Sierbert K., Currie M. G., and Needleman P., 1993. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. U.S.A. 90, 7240-7244. Schmidt, A. M., Weidman, E., Lalla, E., Yan, S. D., Hori, O., Cao, R., Brett, J. G., and Lamster, I. B., 1996. Advanced glycation end products (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. J. Periodontal Res. 31, 508-515. Schmidt, A. M., Yan, S. D., Brett, J., Mora, R., Nowygrod, R., and Stern, D., 1993. Regulation of human mononuclear phagocyte migration by cell-surface-binding proteins for advanced glycation end products. J. Clin. Invest. 91, 2155-2168. Scivittaro, V., Ganz, M. B., and Weiss, M. F., 2000. AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells. Am. J. Physiol. 278, F676-683. Sell, D. R. and Monnier, V. M., 1990. End-stage renal disease and diabetics catalyze the formation of a pentose-derived cross-link from aging human collagen. J. Clin. Invest. 85, 380-384. Serou, M. J., DeCoster, M. A., and Bazan, N. G., 1999. Interleukin-1 beta activates expression of cyclooxygenase-2 and inducible nitric oxide synthase in primary hippocampal neuronal culture: platelet-activating factor as a preferential mediator of cyclooxygenase-2 expression. J. Neurosci. Res. 58, 593-598. Simm, A., Munch, G., Seif, F., Schenk, O., Heidland, A., Richter, H., Vamvakas, S., and Schinzel, R., 1997. Advanced glycation end products stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett. 410, 481-484. Skolnik, E. Y., Yang, S. Z., Makita, Z., Radoff, S., Kirstein, M., and Vlassara, H., 1991. Human and rat mesangial cell receptors for glucose-modified proteins: Potential role in kidney tissue remodeling and diabetic nephrolpathy. J. Exp. Med. 174, 931-939. Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S. D., Sterm, D., Sayre, L. M., Monnier, V. M., and Perry, G., 1994. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. U.S.A. 91, 5710-5714. Smith, W. L. and Dewitt, D. L., 1996. Prostaglandin endoperoxide H synthases (cyclooxygenase)-1 and -2. Adv. Immunol. 62, 167-215. Smith, W. L., Marnett, L. J., and DeWitt, D. L., 1991. Prostaglandin and thromboxane biosynthesis. Pharmacol. Ther. 49, 153-179. Subbaramaiah, K., Telang, N., Ramonetti, J. T., Araki, R., DeVito, B., Weksler, B. B., and Dannenberg, A. J., 1996. Transcription of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells. Cancer Res. 56, 4424-4429. Vane, J. R., 1971. Inhibition of prostaglandin synthesis as a mechanism of action of the aspirin-like drugs. Nature New Biol. 231, 232-235. Vane, J., 1994. Towards a better aspirin. Nature 367, 215-216. Vitek, M. P., Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K., and Cerami, A., 1994. Advanced glycation end products contribute to amyloidosis in Alzhrimer disease. Proc. Natl. Acad. Sci. U.S.A. 91, 4766-4770. Vlassara, H., Fuh, H., Makita, Z., Krungkrai, S., Cerami, A., and Bucula, R., 1992. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc. Natl. Acad. Sci. U.S.A. 89, 12043-12047. Vlassara, H., Li, Y. M., Imani, F., Wojciechowicz, D.,Yang, Z., Liu, F. T., and Cerami, A., 1995. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): A new member of the AGE-receptor complex. Mol. Med. 1, 634-646. Wautier, J. L., Zoukourian, C., Chappey, O., Wautier, M. P., Guillausseau, P. J., Cao, R., Hori, O., Stern, D., and Schmidt, A. M., 1996. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J. Clin. Invest. 97, 238-243. Xie, W., Chapman, J. G., Robertson, D. L., Erikson, R. L. and Simons, D., 1991. Expression of mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. U.S.A. 88, 2692-2696. Xie, W., Fletcher, B. S., Andersen, R. D., and Herschman, H. R., 1994. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element. Mol. Cell. Biol. 14, 6531-6539. Yamaki, K., Yonezawa, T., and Ohuchi, K., 2000. Signal transduction cascade in strausporine-induced prostaglandin E(2) production by rat peritoneal macrophages. J. Pharmacol. Exp. Ther. 293, 206-213. Yamamoto, K., Arakawa, T., Ueda, N., and Yamamoto, S., 1995. Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J. Biol. Chem. 270, 31315-31320. Yan, S. D., Stern, D., and Schmidt, A. M., 1997. What’s the RAGE? The receptor for advanced glycation end products (RAGE) and the dark side of glucose. Eur. J. Clin. Invest. 27, 179-181. Yan, Z., Subbaramaiah, K., Camilli, T., Zhang, F., Tanabe, T., McCaffrey, T. A., Dannenberg, A. J., and Weksler, B. B., 2000. Benzo[a]pyrene induces the transcription of cyclooxygenase-2 in vascular smooth muscle cells. Evidence for the involvement of extracellular signal-regulated kinase and NF-kappaB. J. Biol. Chem. 275, 4949-4955. Yucel-Lindberg, T., Ahola, H., Carlstedt-Duke, J., and Modeer, T., 1999. Involvement of tyrosine kinases on cyclooxygenase expression and prostaglandin E2 production in human gingival fibroblast stimulated with interleukin-1beta and epidermal growth factor. Biochem. Biophys. Res. Commun. 257, 528-532.
|