跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/12 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡蕙如
研究生(外文):Hui-Ju Tsai
論文名稱:Arginine添加對燒傷老鼠營養素代謝,抗氧化狀態及免疫功能之影響
論文名稱(外文):Effects of arginine supplementation on nutrient metabolism, antioxidant capacity and immune response in burned mice
指導教授:葉松鈴葉松鈴引用關係商惠芳商惠芳引用關係
指導教授(外文):Sung-Ling YehHuey-Fang Shang
學位類別:碩士
校院名稱:台北醫學院
系所名稱:保健營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:111
中文關鍵詞:燒傷精胺酸細胞激素抗體脂質過氧化
外文關鍵詞:burnaigininecytokineantibodylipid peroxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在探討飲食中添加Arg對燒傷老鼠營養素代謝、抗氧化狀態及免疫反應之影響,同時為深入暸解Arg對老鼠免疫反應之影響,我們亦探討給予綠膿桿菌疫苗後Arg之添加對燒傷後感染所造成之影響。實驗對象為雄性BALB/c小鼠,實驗共分成四個部分,實驗一將老鼠分成2組,每組各30隻:一組在飼料中添加佔總熱量2%的Arg,另一組以等氮量之Glycine (Gly)代之,兩組除添加之胺基酸組成不同外,其餘飼料成分均相同。飼料共餵食四週,於四週後以酒精引致體表30% 之燒傷,由於老鼠燒傷之後三天內是異化作用最嚴重的時期,故分別於燒傷後之1、2、3天各犧牲10隻以比較兩組在不同時間點營養素代謝及各器官遭受氧化傷害之情形。實驗二實驗動物之飼養、分組及燒傷方法同實驗一,為瞭解Arg對燒傷老鼠免疫細胞之影響,老鼠飼養四週之後引致燒傷,取出老鼠燒傷24小時後之腹腔巨噬細胞及脾臟細胞以不同濃度之mitogen:lipopolysaccharide (LPS)及phytohemagglutinin (PHA)刺激之,以測定其細胞激素的分泌量。實驗三實驗動物之飼養、分組及燒傷方法同實驗一,但在燒傷後於燒傷部位皮下接種綠膿桿菌以引致感染並觀察存活率之差異。實驗四同樣分成兩組,每組各10隻,飼料共餵食7週,在第0週時先採血做為基準值,並於皮下注射綠膿桿菌疫苗,接著於第4週時再追加一劑,在第7週結束時引致燒傷,於燒傷24小時後將老鼠犧牲,分析第0、4、7週及燒傷24小時後老鼠血中綠膿桿菌抗體產生量。實驗一之結果顯示,在glutathione peroxidase的活性方面,肝臟及肺臟在燒傷後第1天及第3天,腎臟在燒傷後第1、2天,Arg組顯著較Gly組為低。Superoxide dismutase活性方面,Arg組之肝臟在燒傷後第3天,肺臟在燒傷後第1、2天,腎臟在燒傷後第1、3天均顯著較Gly組為低。在過氧化物之生成量方面,肝臟在燒傷後第1天及第2天,腎臟則在燒傷後之第2天,Arg組過氧化物之生成量顯著較Gly組為低。實驗二之脾臟細胞以PHA刺激前及刺激後,Arg組的interleukin(IL)-10之分泌量顯著較Gly組為高, IL-4則兩組之間沒有差異,interferon-γ (IFN-γ)則以LPS 20ng及50ng刺激後Arg較Gly組為高。在巨噬細胞方面,我們偵測與發炎反應有關細胞激素TNF-的變化,結果Arg組與Gly組間無顯著差異。實驗三之燒傷老鼠被綠膿桿菌感染後存活率方面兩組之間無明顯差異。實驗四之結果顯示,隨著實驗週數的增加,抗體的生成量也會增加,且燒傷之後會使抗體的產生量減少,Arg組之抗體生成量在第4、7週及燒傷後,顯著較Gly組為高。此研究之結果顯示,飲食中添加Arg可顯著降低燒傷引致之器官過氧化物的產生,同時器官中抗氧化酵素之活性亦較低,推測Arg添加應可使器官因燒傷引致之氧化傷害降低,同時添加Arg可促進燒傷老鼠體內特異性抗體的產生,並使其脾臟細胞和巨噬細胞在部分細胞激素的分泌上有較佳之反應。

The purpose of this study was to explore the effect of arginine (Arg) supplementation on nutrients metabolism and immune response in burned mice. There were 4 experiments in this study. In Exp. one, sixty male BALB/c mice were assigned to two groups and fed with diets supplemented with either Arg (2% of total calorie) or an equivalent amount of nitrogen in the form of glycine (Gly). After 4 weeks, all mice were received 30% body surface area burn injury. Mice of each group were sacrificed on the 3 consecutive days after burn with 10 mice on each respective day. The antioxidant enzyme activities and lipid peroxidation products in liver, lung and kidney were analyzed to compare the oxidative damage of the organs between the 2 groups. Mice grouping, feeding and burning procedures were the same in Exp. 2, 3, 4. In Exp. 2, mice were sacrificed 24 hours after burn, and the peritoneal macrophage and spleen cells were harvested and stimulated by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) with different concentrations to investigate the secretion of cytokines. The purpose of Exp.3 was to compare the survival rate of burned mice after Pseudomonas aeruginosa infection between the 2 groups. Thirty mice were infected with P. aeruginosa after burn, and survival was recorded twice per day for 2 weeks. Mice in the Exp. 4 were fed experimental diets for 7 weeks. All mice were immunized with vaccine of Pseudomonas aeruginosa on the first day and boostered at week 4. Blood were withdrawn at week 0 for baseline measurement, and 1, 4, 7 weeks for analysis the titers of antibody specific for P. aeruginosa. The results showed that antioxidant enzymes glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) activities in the tissues were tend to be lower in the Arg group than the Gly group on the different days after burn. Liver lipid peroxidation products were significantly lower in the Arg group at day 1 and 2 after burn than the Gly group. Also, lipid peroxidation products were lower in kidney homogenates in the Arg group than the Gly group. Results in Exp.2 demonstrated that interleukin (IL)-10 concentrations in PHA-stimulated splenocyte of the Arg group were significantly higher than the Gly group. Interferon- in LPS-stimulated splenocyte was also significantly higher in the Arg group than the Gly group. However, no differences in IL-2 and IL-4 concentrations were observed in splenocyte between the 2 groups. In addition, the concentration of proinflammatory factor TNF- secreted by LPS stimulated peritoneal macrophages was also no difference between these two groups. About the survival rate of burned mice after P. aeruginosa infection, there was no significant difference between the 2 groups in Exp. 3. Measurements in Exp.4 indicated that the antibody titer specific for P. aeruginosa was increased in accordance with the proceeding of the experiment, while the titer of antibody was significantly reduced after burn injury. The antibody titer at week 4 and 7 were significantly higher in the Arg group than the Gly group. In summary, the results in this study suggest that burned mice supplemented with Arg had lower oxidative stress than the Gly supplemented group. Besides, Arg supplementation enhances the production of specific antibody, and may also have beneficial effects on some cytokines secretion from stimulated splenocyte in vitro.

目 錄
頁數
中文摘要 …………………………………………………………….. I
英文摘要 …………………………………………………………….. IV
目錄 ..………………………………………………………………… V
表目錄 ……………………………………………………………….VIII
圖目錄 ………………………………………………………………..IX
【縮寫對照表】………………………………………………………XII
第一章 緒論…………………………………………………………….1
第一節 前言………………………………………………………...1
第二節 燒燙傷之臨床症狀及治療……………………….………..2
第三節 燒燙傷後的代謝變化……………………………...………4
第四節 燒燙傷後免疫能力及氧化狀態之變化………………...…5
第五節 燒燙傷後的感染及免疫療法…………………………...…7
第六節 研究目的……………………………………………….…..9
第二章 文獻回顧………………………………………………………11
第三章 材料與方法……………………………………………………17
第一節 實驗材料……………………………………………….…17
第二節 實驗方法………………………………………………….24
第三節 統計分析…………………………………………………45
第四章 結果……………………………………………………..…….46
第一節 【實驗一】…………………………………………….…46
第二節 【實驗二】…………………………………………….…50
第三節 【實驗三】…………………………………………….…51
第四節 【實驗四】………………………………………….……52
第五章 討論…………………………………………………..….…….84
第六章 結論……………………………………………………...…….97
參考文獻………………………………………………………………..98
表目錄
頁數
Table 1. Composition of the experimental diet. (g/kg)…………….….55
【實驗二】
Table 2. Interleukin (IL)-4 and IL-10 concentrations in PHA-stimulated splenic lymphocyte cultures in burned mice……………..……75
【實驗四】
Table 3. Plasma lactate, non-esterified fatty acid (NEFA), glucose and albumin concentrations between the 2 groups after burn in Experiment 3……………………………………………..……78
Table 4. Blood CD4, CD8, CD3, CD19 cells and CD4/CD8 ratio between the 2 groups after burn in Experiment 4………………….……82
圖目錄
【實驗一】 頁數
Fig. 1-1 Plasma arginine, glutamine and alanine concentrations between the 2 groups after burn for 1, 2 and 3 days…………..…………56
Fig. 1-2 Plasma branched-chain amino acid (BCAA: valine, leucine, isoleucine) concentrations between the 2 groups after burn for 1, 2 and 3 days…………………………………………………….57
Fig. 1-3 Plasma urea concentrations between the 2 groups after burn for 1, 2 and 3 days…………………………………………………….58
Fig. 1-4 Plasma glucose concentrations between the 2 groups after burn for 2 and 3 days………………………………………….…..….59
Fig. 1-5 Plasma lactate concentrations between the 2 groups after burn for 2 and 3 days…………………………………………………….60
Fig. 1-6 Plasma non-esterified fatty acid concentrations between the 2 groups after thermal injury for 2 and 3 days…………………...61
Fig. 1-7 Plasma nitrate concentrations between the 2 groups after burn for 2 and 3 days…………………………………………………….62
Fig. 1-8 Plasma albumin concentrations between the 2 groups after burn for 2 and 3 days…………………………………………………63
Fig. 1-9 Liver glutathione peroxidase(GSHPx) activities between the 2 groups after burn for 1, 2 and 3 days…………………...………64
Fig. 1-10 Lung glutathione peroxidase (GSHPx) activities between the 2 groups after burn for 1, 2 and 3 days………………………...…65
Fig. 1-11 Kidney glutathione peroxidase (GSHPx) activities between the 2 groups after burn for 1, 2 and 3 days……………...………….66
Fig. 1-12 Liver superoxide dismutase (SOD) activities between the 2 groups after thermal injury for 1, 2 and 3 days…………………67
Fig. 1-13 Lung superoxide dismutase (SOD) activities between the 2 groups after burn for 1, 2 and 3 days………………………...…68
Fig. 1-14 Kidney superoxide dismutase (SOD) activities between the 2 groups after burn for 1, 2 and 3 days…………………...………69
Fig. 1-15 Liver malondialdehyde (MDA) concentrations between the 2 groups after burn for 1, 2 and 3 days …………...……………...70
Fig. 1-16 Kidney malondialdehyde (MDA) concentrations between the 2 groups after burnfor 1, 2 and 3 days……………………………71
【實驗二】
Fig. 2-1 IFN-γ concentrations in LPS-stimulated peritoneal macrophage cultures from burned mice……………………………………...72
Fig. 2-2 TNF-α concentrations in LPS-stimulated peritoneal macrophage cultures from burned mice……………………………………...73
Fig. 2-3 IFN-γ concentrations in LPS-stimulated splenic lymphocyte cultures from burned mice……………………………….……..74
【實驗三】
Fig. 3-1 Survival curves of the arginine and glycine groups after burn……………………………………………………………..76
【實驗四】
Fig. 4-1 Survival curves of the arginine and glycine groups after burn… ………………………………………………………….77
Fig. 4-2 Tissue glutathione peroxidase (GSHPx)activities between the 2 groups after burn………………………….………………….…79
Fig. 4-3 Tissue superoxide dismutase (SOD) activities between the 2 groups after burn………….…………………………………….80
Fig. 4-4 Tissue malondialdehyde (MDA) concentrations between the 2 groups after thermal injury………….………………………….81
Fig. 4-5 Antibody titer of the mice at different feeding time and 24 hours after burn…………………………………………..……………83

Abbas A.K., Murphy K.M. & Sher A. (1996) Functionaldiversity of herlper T lymphocytes. Nature 383: 787-793.
Alexander J.W. (1990) Mechanism of immunologic suppression in burn injury. J Trauma 30: S70-75.
Alexander J.W., MacMillan B.G., Stinnett J.D., Ogle C.K., Bozian R.C., Fischer J.E., Oakes J.B., Morris M.J. & Krummel R. (1980) Beneficial effect of aggressive protein feeding in severely burned children. Ann Surg 192: 505-517.
Alexander J.W., Ogle C.K., Stinnett J.D. & Macmillan B.G. (1978) Asequential prospective analysis of immunologic abnormalities and infection following severe thermal injury. Ann Surg 188: 809-816.
Anonymous. (1983) Muscle protein catabolism in cirrhotic patients reduced by branched-chain amino acids. Nutr. Rev. 41: 146-149.
Ardawi M.S.M. (1988) Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism 37: 99
Ardawi M.S.M. & Newsholme E.A. (1983)Glutamine metabolism in lymphocytes of the rat. Biochem J 212: 835.
Armstrong M.D. & Stave U. (1973) A study of plasma free amino acid levels. I. Study of factors affecting validity of amino acid analyses. Metabolism 22: 549-560.
Aulick L.H., Wilmore D.W., Mason A.D. & Pruitt BA. (1997) Influence of the burn wound on peripheral circulation in thermally injured patients. Am J Physio 233: H520-526.
Barbul A., Lazarou S.A., Efron D.T., Wasserkrug H.L. & Efron G. (1990) Arginine enhances wound healing and lymphocyte immune responses in human. Surgery 108: 331-335.
Barbul A. (1986) Arginine: Biochemistry, physiology, and therapeutic implications. JPEN 10: 227-238.
Barbul A., Wasserkrug H.L., Yoshimura N., Tao R. & Efron G. (1984) High arginine levels in intravenous hyperalimentation abrogate post-traumatic immune suppression. J Surg Res 36: 620-624.
Barbul A., Sisto D.A., Wasserkrug H.L. & Efron G. (1981) Arginine stimulates lymphocyte immune response in healthy human beings. Surgery 90: 244-251.
Barbul A., Sisto D.A., Wasserkrug H.L., Yoshimura N.N. & Efron G. (1981) Metabolic and immune effects of arginine in postinjury hypermetabolism. J Trauma-Injury Infection & Critical Care 21: 970-974.
Barbul A., Wasserkrug H.L., Seifter E., Rettura G., Levenson S.M. & Efron G. (1980) Immunostimulatory effects of arginine in normal and injured rats. J Surg Res 29: 228-235.
Barbul A., Rettura G., Levenson S.M. & Seifter E. (1977) Arginine: thymotropic and wound healing promoting agent. Surg Forum 28: 101-103.
Becker W.K., Shippee R.L., McManus A.T., Mason A.D. Jr. & Pruitt B.A. Jr. (1993) Kinetics of nitric oxide production following experimental thermal injury. J Trauma 34: 855-862.
Bodey G.P., Bolivar R., Fainstein V. & Jadeja L. (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5: 279-313.
Boykin J.V., Eriksson E. & Pittman R.N. (1980) In vivo microcirculation of a scald burn and the progression of post-burn dermal ischemia. Plast & Resconstr Surg 66: 191-198.
Bulgrin J.P., Shabani M. & Smith D. J. (1993) Arginine-free diet suppresses nitric oxide production in wounds. J. Nutr. Biochem 4: 588-593.
Cetinkale O., Konukoglu D., Senel O., Kemerli G.D. & Yazar S. (1999) Modulating the functions of neutrophils and lipid peroxidation by FK506 in a rat model of thermal injury. Burns 25: 105-112.
Chen T.Y., Lin C.P., Loa C.C., Chen T.L., Shang H.F., Hwang J. & Hui C.F. (1999) A nontoxic Pseudomonas Exotoxin A induces active immunity and passive protective antibody against Pseudomonas Exotoxin A intoxication. J Biomed Sci 6: 357-363.
Chen T.Y., Shang H.F., Chen T.L., Lin C.P., Hui C.F. & Hwang J. (1999) Recombinant protein composed of Pseudomonas Exotoxin A,outer membrane protein I and F as vaccine against P.aeruginosa infection. Appl Microbiol Biotechnol 253: 1-10.
Cryz S.J. (1984) Pseudomonas aeruginosa Infections. In R. Germanier (ed.) Academic Press, Inc., Orlando, Fla. P.317-351. 1984
Cui X.L., Iwasa M., Iwasa Y., Ohmori Y., Yamamoto A., Maeda H., Kume M., Ogoshi S., Yokoyama A., Sugawara T. & Funada T. (1999) Effects of dietary arginine supplementation on protein turnover and tissue protein synthesis in scald-burn rats. Nutrition 15: 563-569.
Currie G.A. (1978) Activated macrophages kill tumor cells by releasing arginase. Nature 273: 758.
Cynober L. (1989) Aminoacid metabolism in the thermal burns. JPEN 13: 196-205.
Daly J.M., Reynolds J., Thom A., Kinsley L., Dietrick-Gallagher M., Shou J. & Ruggieri B. (1988) Immune and metabolic effects of arginine in the surgical patient. Ann Surg 208: 512-521.
Davis Y. (1964) Christopler’s Textbook of Surgery. Eighth edition. Saunders Company. U.S.A. p160-190
Deitch E.A. (1995) Nutritional support of the burn patients. Crit Care Clin 11: 735-750.
Deitch E.A. (1990) Intestinal permeability is increased in burn patients shortly after injury. Surgery 107: 411-416.
Deitch E.A., Lu Q., Xu D.Z. & Specian RD. (1990) Effect of local and systemic burn microenvironment on neutrophil activation as assessed by complement receptor expression and morphology. J Trauma 30: 259
De-Souza D.A. & Greene L.J. (1998) Phamacological nutrition after burn injury. J Nutr 128: 797-803.
Dinarello C.A. (1991) The proinflammatory cytokines, interleukin-1 and tumor necrosis factor and the treatment of the septic shock syndrome, J Infect Dis 163: 1177-1184
Dinarello C.A. (1984) Interleukin-1 and the pathogenesis of the acute phase response. N Engl. J Med. 311: 1413-1418.
Drost A.C., Burleson D.G., Cioffi W.G., Mason A.D. & Pruitt B.A. (1993) Plasma cytokines after thermal injury and their relationship to infection. Ann Surg. 218 74-78.
Dupre J., Curtis J.D., Waddwll R.W. & Beck J.C. (1968) Alimentary factors in the endocrine response to administration of arginine in man. Lancet 2: 28-29.
Elsenstein R.S. & Harper A.E. (1991) Relationship between protein intake and hepatic protein synthesis in rats. J Nutr 121: 1581-1590.
Evain-Brion D., Donnadieu M., Roger M. & Job J.C. (1982) Simultaneous study of somatotropic and corticotropic pituitary secretions during ornithine infusion test. Clin. Endocrinol. 17: 119-122.
Eisenstein R.S. & Harper A.E. (1991) Relationship between protein intake and hepatic protein synthesis in rats. J Nutr 121: 1581-1590.
Evoy D., Lieberman M.D., Fahey T.J. 3rd. & Daly J.M. (1998) Immunonutrition: the role of arginine. Nutrition 14: 611-617.
Featherston W.R., Rogers Q.R. & Freedland R.A. (1973) Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol 224: 127-129.
Fink M.P. & Payen D. (1995) The role of nitric oxide in sepsis and ARDS: synopsis of a roundtable conference held in Brussel on 18-20 March. Intensive Care Med 22: 158-165.
Gianotti L., Alexander J.W., Pyles T. & Fukushima R. (1993) Arginine-supplemented diets improve survival in gut-derived sepsis and peritonitis by modulating bacterial clearance. Ann Surg 217: 644-654.
Gianotti L., Braga M., Vignali A., Balzano G., Zerbi A., Bisagni P. & Di Carlo V. (1997) Effect of route of delivery and formulation of postoperative nutritional support in patients undergoing major operations for malignant neoplasms. Arch Surg 132: 1222-1230.
Gibson R.S. (1990) Assessment of protein status. In: Principles of nutritional assessment. Oxford University Press, New York, pp307-348.
Gonce S.J., Peck M.D., Alexander J.W. & Miskell PW. (1990) Arginine supplementation and its effect on established peritonitis in guinea pigs. J Parent Enteral Nutr 14: 237-244.
Granger D.L., Hibbs J.B. Jr. & Broadnax L.M. (1991) Urinary nitrite excretion in relation to murine macrophage activation. J Immunol 146: 1294-1302.
Green S.J. (1995) Nitric oxide in mucosal immunity. Nat. Med. 1: 515.
Hancock R.E.W. (1986) Intrinsic antibiotic resistance of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 18: 653-656.
Hasselgren P. (1999) Burns and metabolism. J. Am. Coll. Surg. 188: 98-103.
Harlan J.M. (1987) Consequences of leukocyte-vessel wall interaction in inflammatory and immune reactions. Semin Thromb Hemost 13: 434.
Hernandez L.A., Grisham M.B., Twohig B., Arfors K.E., Harlan J.M. & Granger D.N. (1987) Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol 253: H699-H703.
Hierholzer C., Menezes J., Kalff J.C. et al. (1998) Essential role of induced nitric oxide in intestine inflammation and stasis following hemorrhagic shock. Surg Forum 49: 78-80.
Holt L.E. Jr., Snyderman S.E., Norton P.M., Roitman E, & Finch J. (1963) The plasma aminogram in Kwashiorkor. Lancet ii: 1343-1348.
Horton J.W., White J., Maass D. & Sanders B. (1998) Arginine in burn injury improves cardiac performance and prevents b acterial translocation. J Appl Physiol 84: 695-702.
Howard M. & O’Garra A. (1992) Biological properties of interleukin 10. Immunol Today 13: 198-200
Hurson M., Regan M.C., Kirk S.J., Wasserkrug H.L. & Barbul A. (1995) Metabolic effects of arginine in a healthy elderly population. JPEN 19: 227-230.
Isidori A., LoMonaco A. & Cappa M. (1981) Study of growth hormone release in man after oral administration of amino acids. Curr Med Res Opin 7: 475-481.
Janu P., Li J., Renegar K.B. & Kudsk K.A. (1997) Recovery of gut-associated lymphoid tissue and upper respiratory tract immunity after parenteral nutrition. Ann Surg 225: 707-717.
Jones M.E. (1985) Conversion of glutamate to ornithine and proline: pyrro-line-5-carboxylate, a possible modulator of arginine requirements. J Nutr 115: 509-515
Kelly J.L., Lyons A. & Soberg C.C. (1997) Anti-interleukin-10 antibody restores burn-induced defects in T-cell function. Surgery 122: 146-152.
Klein D. & Morris D.R. (1978) Increased arginase activity during lymphocyte mitogenesis. Biochem Biophys Res Commun 81: 199-204.
Kiyono H. & McGhee J.R. (1994) T helper cells for mucosal response responses. In: Ogra P.L., Lamm M.E., McGhee J.R., Mestecky J., Strober W., Bienenstock Bienestock J., eds. Handbook of mucosal immunology. San Diego: Academic Press: 263-273.
Krause R.M., Dimmock N.J. & Morens D.M. (1997) Summary of antibody workshop: the role of humoral immunity in the treatment and prevention of emerging and extant infectious diseases. J Infect Dis 176: 549-559.
Lederer J.A., Rodrick M.L.& Mannick J.A. (1999) The effect of injury on the adaptive immune response. Shock 11: 153-159.
Lindblom L., Cassuto J., Yregard L., Mattsson U., Tarnow P. & Sinclair R. (2000) Importance of nitric oxide in the regulation of burn oedema, proteinuria and urine output. Burns 26: 13-17.
Lindblom L., Cassuto J., Yregard L., Mattsson U., Tarnow P. & Sinclair R. (2000) Role of nitric oxide in the control of burn perfusion. Burns 26: 19-23.
Li J., Kudsk K.A., Janu P. & Renegar KB. (1997) Effect of glutamine-enriched total parenteral nutrition on small intestinal gut-associated lymphoid tissue and upper respiratory tract immunity. Surgery 121: 542-549.
Lorente J.A., Landin L., De Pablo R., Renes E. & Liste D. (1993) L-arginine pathway in the sepsis syndrome. Crit Care Med 21: 1287-1295.
Lunn P.G. & Austin S. (1983) Differences in nitrogen metabolism between protein-deficient and energy-deficient rats with similarly restricted growth rates. Ann Nutr Metab 27: 242-251.
Macmicking J., Xie Q.W. & Nathan C. (1997) Nitric oxide and macrophage function.Annu.Rev.Immunol.15: 323-350.
Merimee T.J., Lillicrap D.A. & Rabinowitz D. (1965) Effect of dietary arginine inhibits growth of metastatic tumor. Arch Surg 126: 1376.
Minuskin M.L., Lavine M.E., Ulman E.A. & Fisher H. (1981) Nitrogen retention, muscle creatine and orotic acid excretion in traumatized rats fed arginine and glycine enriched diets. J Nutr 111: 1265-1274
Mileski W., Gates B., Sigman A., Sikes P., Atiles L., Lightfoot E., Lipsky P. & Baxter C. (1993) Inhibition of leukocyte adherence in a rabbit model of major thermal injury. J Burn Care Rehabil 14: 610-616.
Molina-Holgado E., Vela J.M., Arevalo-Martin A. & Guaza C. (2001) LPS/IFN-gamma cytotoxicity in oligodendroglial cells: role of nitric oxide and protection by the anti-inflammatory cytokine IL-10. European Journal of Neuroscience 13: 493-502.
Molloy R.G., Mannick J.A. & Rodrick M.L. (1993) Cytokines, sepsis and immunomodulation. Br J Surg 8: 289-297.
Moncada S. & Higgs E.A. (1993) The L-arginine nitric oxide pathway. N Engl J Med 329: 2002-2012.
Moon M.R., Parikh A.A., Pritts T.A., Fischer J.E., Cottongim S., Szabo C. Salzman A.L. & Hasselgren P.O. (1999) Complement component C3 production in IL-1beta-stimulated human intestinal epithelial cells is blocked by NF-kappaB inhibitors and by transfection with ser 32/36 mutant IkappaBalpha. J Surg Res 82: 48-55
Moran K.T. & Munster A.M. (1987) Alteration of the host defense mechenism in burned patients. Surg Clin North Am 67: 47-55.
Mori M. & Gotoh T. (2000) Regulation od nitric oxide production by arginine metabolic enzymes. Biochemical & Biophysical Research Communications 275: 715-719.
Morris S.M. (1998) Arginine synthesis ,metabolism, and transport: regulators of nitric oxide synthesis. In: Cellular and Molecular Biology of Nitric oxide(Laskin J.,Laskin D.,eds.), pp. 57-85. Marcel Dekker, New York, NY.
Munder M., Eichemann K. & Modolell M. (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. Journal of Immunology 160: 5347-5354.
Munster A.M., Smith-Meek M., Dickerson C. & Weinchurch R.A. (1993) Translocation: Incidental phenomenon or true pathology? Ann Surg. 218: 321-327.
Munster A.M., Eurenius K., Katz R.M., Canales L., Foley F.D. & Mortensen R.F. (1973) Cell-mediated immunity after thermal injury. Ann Surg 117: 139-143.
Nishigaki I., Hagihara M., Hiramatsu M., Izawa Y. & Yagi K. (1980) Effect of thermal injury on lipid peroxide levels of rat. Biochem Med 24: 185-189.
Ogle C.K., Ogle J.D. & Alexander J.W. (1984) Inhibition of bacteria clearance in the guinea pig by fluid-phase C3b. Arch Surg 119:57-60.
Okusawa S., Gelfard J.A., Ikejima T., Connolly R.J. & Dinarello C.A. (1988) Interleukin-1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effects of cyclooxygenase inhibition. J. Clin. Ivest. 81: 1162-1172.
O'Mahony J.B., Wood J.J., Rodrick M.L. & Mannick J.A. (1985) Changes in T lymphocyte subsets following injury: Assessment by flow cytometry and relationship to sepsis. Ann Surg 202: 580-586.
O'Sullivan S.T., Lederer J.A., Horgan A.F., Chin D.H., Mannick J.A. & Rodrick M.L. (1995) Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg 222: 482-492.
Parry-Billings M., Dimitriadis G.D., Leighton B., Bond J., Bevan S.J., Opara E. & Newsholme E.A. (1990) Dose glutamine contribute to immunosuppression after burns? Lancet 336: 523-525.
Pollack S.V. (1979) Wound healing: a review of nutritional factors affecting wound healing. J Dermatol Surg Oncol 5: 615-619.
Preiser J.C., Reper P., Vlasselaer D., Vray B., Zhang H., Metz G., Vanderkelen A. & Vincent J.L. (1996) Nitric oxide production is increased in patients with burn injury. J Trauma 40: 368-371.
Pruitt B.A. (1980) Infections of burns and other wounds caused by Pseudomonas aeruginosa. In L.D. Sabath (Ed.) Pseudomonas aeruginosa the organism, diseases causes, and their treatment. Bern: Huber, P.55.
Reynolds J.V., Daly J.M. & Zhang S. (1988) Immunomodulatory mechanisms of arginine. Surgery 104: 142-151.
Rogers Q.A. & Visek W.J. (1985) Metabolic role of urea cycle intermediates: nutritional and clinical aspects. J Nutr 115: 505-508.
Rutschman R., Lang R., Hesse M., Ihle J.N., Wynn T.A. & Murray P.J. (2001) Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. Journal of Immunilogy 166(4): 2173-2177.
Ignarro L.J. (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 30: 535-560.
Isidori A., LoMonaco A. & Cappa M. (1981) Study of growth hormone release in man after oral administration of amino acids. Curr. Med. Res. Opin. 7: 475-481.
Saitoh D., Okada Y., Ookawara T., Yamashita H., Takahara T., Ishihara S., Ohno H. & Mimura K. (1994) Prevention of ongoing lipid peroxidation by wound excision and superoxide dismutase treatment in the burned rat. Am J Emerg Med 12: 142-146.
Saito H., Trocki O., Wang S.L., Gonce S.J., Joffe S.N. & Alexander J.W. (1987) Metabolic and immune effects of dietary arginine supplementation after burn. Arch Surg. 122: 784-789.
Shaheen K.W., Punch J.D., Rees R.S. et al. (1990) Early role of neutrophil in skin flap failue. Surg Forum 41: 553-555.
Shang H.F., Yeh M.L., Lin C.P. & Hwang J. (1996) Characterization of monoclonal antibody B7, which neutralizes the cytotoxicity of Pseudomonas aeruginosa exotoxin A. Clin Diag Lab Immun 3: 727-732.
Shangraw R.E., Jahoor F., Miyoshi H., Neff W.A., Stuart C.A., Herndon D.N. & Wolfe R.R. (1989) Differentiation between septic and postburn insulin resistance. Metabolism 38: 983-989.
Seifter E., Rettura G., Barbul A. & Levenson S.M. (1978) Arginine an essential amino acid for injured rats. Surgery 84: 224-230.
Simpson R., Alon R., Kobzik L., Valeri C.R., Shepro D. & Hechtman H.B. (1993) Neutrophil and nonneutrophil-mediated injury in intestinal ischemia-reperfision. Ann Surg 218: 444-454.
Sitren H.S. & Fisher H. (1977) Nitrogen retention in rats fed on diets enriched with arginine and glycine. I. Improved N retention after trauma. Br J Nutr 37: 195-208.
Smith R.J. & Panico K. (1985) Automated analysis of o-phthalaldehyde derivatives of amino acids in physiological fluids by reverse phase high performance liquid chromatography. J Liq Chromatogr 8: 1783-1795.
Souba W.W., Herskowitz K., Austgen T.R., Chen M.K. & Salloum R.M. (1990) Glutamine nutrition: theoretical considerations and therapeutic impact. JPEN 14: 237S-243S.
Souba W.W., Herskowitz K., Salloum R.M., Chen M.K. & Austgen T.R. (1990) Gut glutamine metabolism. JPEN 14:45S.
Stengle J., Meyers R., Pyle J. & Dries D.J. (1996) Neutrophil recruitment after remote scald injury. J Burn Care Rehabil 17: 14-18.
ter Steege J.C., van de Ven M.W., Forget P.P., Brouckaert P. & Buurman W.A. (1998) The role of endogenous IFN-gamma, TNF-alpha and IL-10 in LPS-induced nitric oxide release in a mouse model. Cytokine 10: 115-123.
Till G.O., Beauchamp C., Menapace D., Tourtellotte W. Jr., Kunkel R., Johnson K.J. & Ward P.A. (1983) Oxygen radical dependent lung damage following thermal injury of rat skin. Trauma 23: 269-277.
Till G.O., Guilds L.S., Mahrougui M., Friedl H.P., Trentz O. & Ward P.A. (1989) Role of xanthine oxidase in thermal injury of skin. Am J Pathol 1135: 195-202.
Tredget E.E. & Yu Y.M. (1992) The metabolic effects of thermal injury. World J Surg 16: 68-79.
van der Poll T., Marchant A., Buurman W.A., Berman L., Keogh C.V., Lazarus D.D., Nguyen L., Goldman M., Moldawer L.L. & Lowry S.F. (1995) Endogenous IL-10 preotecs mice from death during septic peritonitis. J Immunol 155: 5397-5401.
Vaubourdolle M., Coudray-Lucas C., Jardel A., Ziegler F., Ekindjian O.G. & Cynober L. (1991) Action of enterally administered ornithin -ketoglutarate on protein breakdown in skeletal muscle and liver of the burned rat. JPEN 15: 517-520.
Vedder N.B., Bucky L.P., Lopez I. & May J.W. (1991) Inhibition of neutrophil adherence improves survival of random flaps in rabbits. Surg Forum 42: 619-620.
Villavicencio R.T., Pitt B.R., Gauster R. et al. (1998) Inducible nitric oxide synthase inhibits activation of NF-κB and STAT3. Surg. Forum 49: 115-116.
Visek W.J. (1985) Arginine needs, physiological state and usual diets. A reevaluation. J Nutr 116: 36.
Voller A., Bidwell D.E. & Bartlett A. (1979) The enzyme linked immunosorbent assay (ELISA) Dynatech Laboratories, Alexandira, Va.
Weiss S.J. (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365-376.
Wagner D.A., Young V.R. & Tannenbaum S.R. (1983) Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci U.S.A. 80: 4518-4521.
Wolfe R.R. (1996) Relation of metabolic studies to clinical nutrition-the example of burn injury. Am J Clin Nutr 64: 800-808.
Wolfe R.R. & Burke J.F. (1976) Effect of burn trauma on glucose turnover, oxidation, and recycling in guinea pigs. Am J Phsiol 233: E80-85.
Wu G. (1995) Nitric oxide synthesis and the effect aminoquanidine and NG-monomethyl-L-arginine on the onset of diabetes in the spontaneously diabetes BB rat. Diabetes 44: 360-364.
Yeh S.L., Chang K.Y., Huang P.C. & Chen W.J. (1997) Effects of n-3 and n-6 fatty acids on plasma eicosanoids and liver antioxidant enzymes in rats receiving total parenteral nutrition. Nutrition 13: 32-36.
Youn Y.K., LaLonde C. &Demling R. (1992) The role of mediators in the response to thermal injury. World J. Surg. 16: 30-36.
Yu Y.M., Ryan C.M., Burke J.F., Tompkins R.G. & Young V.R. (1995) Relations among arginine, citrulline, ornithine, and leucine kinetics in adult burn patients. Am J Clin Nutr 62: 960-968.
Yu Y.M., Young V.R., Castillo L., Chapman T.E., Tompkins R.G., Ryan C.M. & Burke J.F. (1995) Plasma arginine and leucine kinetics and urea production rates in burn patients. Metabolism 44: 659-666.
Zapata-Sirvent R.L., Hansbrough J.F., Ohara M.M., Rice-Asaro M. & Nyhan W.L. (1994) Bacterial translocation in burned mice after administration of various diets including fiber and glutamine-enriched enteral formulas. Crit Care Med 22: 690-696.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 28. 張國聖,「鄧小平理論與中共官方意識型態的重建」,共黨問題研究,第23卷第12期,台北,民86年12月。
2. 26. 陳泓達:「對馬克斯主義中國化的理解」,東亞季刊,第三十卷第四期,台北,民88年12月。
3. 25. 陳墇津,「中共的權力機制」,中國大陸研究,第36卷第5期,台北,民86年5月。
4. 23. 祖光,「論江澤民政權的合法性」,東亞季刊,第28卷第3期,台北,民86年6月。
5. 22. 吳仁傑,「對中共開展「三講」教育有關情況之述析」,共黨問題研究,第25卷第8期,台北,民88年8月。
6. 21. 吳安家,「中共統治五十年的理論與實際:黨的領導」,中國大陸研究,第42卷第9期,台北,民88年9月。
7. 19. 姜新立,「中共意識型態的演變與發展(下)」,中共研究,34卷5期,台北,2000年5月。
8. 18. 姜新立,「中共意識型態的演變與發展(上)」,中共研究,34卷4期,台北,2000年4月。
9. 17. 姜新立,「後社會主義中國發展轉型論」,東亞季刊,第30卷第2期,台北,民88年4月。
10. 16. 姜新立,「論「中國特色社會主義」及其在後共產主義中的角色意義」,國立中山大學社會科學季刊(高雄),第1卷第2期,台北,民86年夏。
11. 14. 林琳文「後社會主義的中國大陸:國家與社會」,中國大陸研究,(第38卷第8期,民84年。
12. 13. 李英明,「發揚以『民族文化』為本位的民族主義---兼評中共所標榜的『愛國主義』」,共黨問題研究,第12卷第5期,75年5月。
13. 12. 宋國誠,「後殖民理論在中國-理論旅行及其中國化」,中國大陸研究,43卷10期,台北,民89年10月。
14. 11. 克思明,「由『解放思想』到『思想解放』:中共改革思想的緣起與發展(一九七八~一九八七)」,共黨問題研究,第23卷第3期,台北,民86年3月。
15. 10. 邱坤玄,「霸權穩定論與冷戰後中(共)美權力關係」,東亞季刊,第31卷第3期,民89年7月。