跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/13 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林奎佑
研究生(外文):Lin Kuei-Yu
論文名稱:花生四烯酸在大白鼠胚胎大腦皮質神經細胞與大白鼠腎臟髓質嗜鉻腫瘤細胞之神經毒性作用
論文名稱(外文):The neurotoxicity of arachidonic acid on the primary neuronal cell culture and PC12 cells
指導教授:葉健全葉健全引用關係
指導教授(外文):Yeh Geng-Cheng
學位類別:碩士
校院名稱:台北醫學院
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:56
中文關鍵詞:花生四烯酸
外文關鍵詞:arachidonic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
花生四烯酸 (arachidonic acid)是許多重要不飽和脂肪酸之一,它是細胞膜之主要成分之一,也是重要的二級訊息傳遞物質,參與了許多生理及病理現象。過去的研究指出,在海馬迴神經細胞培養上,高劑量之AA其經由lipoxygenase pathway所產生的代謝會造成細胞死亡,由此可知AA在中樞神經細胞毒性上扮演了重要的角色。而本實驗室過去也在大腦皮質神經細胞培養上發現相似之情形,但是lipoxygenase抑制劑並無法完全阻斷AA的毒性。為了更加了解AA對神經細胞生存與發育的影響,與產生毒性作用的機轉和造成細胞死亡的方式,我們使用大白鼠胚胎大腦皮質細胞與PC12細胞來探討AA造成細胞毒性的機制,與是否走向apoptosis。結果發現,在大白鼠腦部皮質神經細胞體外培養3-5天AA並不會透過活化protein kinase C與cannabinoid receptor產生毒性作用,顯然AA是經由cycloxygenase,lipoxygenase,或epoxygenase其中一個pathway產生毒性,而在體外培養12-15天其部分毒性可能有透過活化protein kinase C的途徑。又AA會代謝成anandamide(ANA),我們想知道ANA是否牽涉在AA的毒性機制中。而結果顯示ANA會造成神經毒性作用,在DIV3─5天細胞上顯然並不是經由活化protein kinase C或cannabinoid receptor之途徑,然而在DIV12─15天,抑制掉cycloxygenase,lipoxygenase,與epoxygenase pathway有增加毒性之現象。而抑制掉cannabinoid receptor或合併抑制cycloxygenase,lipoxygenase,epoxygenase pathway與PKC或cannabinoid receptor也是使毒性增加。
在AA對PC12細胞的影響方面,結果顯示在沒有神經生長因子 (NGF) 的狀態下,AA會造成細胞毒性作用(EC50=191.9±17.97),劑量愈高毒性愈大且使細胞數減少(EC50=67.07±6.804)。而TUNEL assay也證實AA毒性作用會造成細胞走向apoptosis的趨勢。
  [3H]thymidine incorporation的數據顯示,AA 300mM顯著抑制細胞之[3H]thymidine incorporation,而1-100mM之AA則增加[3Hthymidine incorporation。因此,1-100mM之AA可以促進細胞之DNA synthesis,也就是說1-100mM之AA可能可以促進細胞增生的作用。
在給予NGF之PC12細胞上,加入各濃度 AA處理後發現除了AA1mM之外,均隨劑量增加造成細胞死亡程度、走向apoptosis之比例增加(EC50=216.6±15.15)。
對於以NGF合併AA處理PC12細胞七天後,可以增加由NGF所誘發趨向分化細胞比例的這種現象,可能是由於細胞繼續複製增生的能力減少,而細胞趨向分化的能力增加,或是已分化完全的細胞進行apoptosis的速率降低所導致。而在給予NGF之PC12細胞上,AA並無法影響PC12細胞neurite outgrowth,原因可能是AA可以促進分化之initiation process,但卻比較無法影響分化之maturation of neurite framework。這與過去本實驗室發現naloxone對細胞之影響類似。
英文摘要
Polyunsaturated fatty acids are integral structural components of membrane phospholipids, where they play an important role in maintaining the structural and functional characteristics of bilayer cell membranes. Arachidonic acid (AA) is one of the most important fatty acids in biological systems including the brain, since it can serve as a precursor of a number of biologically active substances such as prostaglandins, leukotrines and thromboxanes. AA acts as an intracytoplasma second messenger in a variety of physiological or pathological condition, including the hypoxia-ischemia neuronal degeneration. Previous studies indicated that high concentration of AA produce overt neuronal cell death in culture and this toxic effect could be partly inhibited by lipoxygenase inhibitor. Our previous study also shows the similar data on primary neural cell culture, suggesting that the metabolites of AA in this pathway may be hazardous for neurons. Recently, anandamide has been identified as a brain AA derivative that actives cannabinoid receptors and protein kinase C. We further explore the mechanism underlying the AA-mediated toxicity using primary neuron cell culture and explore the effect of AA on cell survival, proliferation, and differentiation on pheochromocytoma PC12 cells. Mixed type cortical neuronal cultures were derived from E15-17 embryos of Spraque-Dawley rat embryos. On DIV3 and DIV12 cells were co-application of AA and various inhibitors for 2 hours. LDH in the culture medium were measured 24 hours after the treatment to serve as a quantification assay of cell death. Our results show that combine treatment with aspirin (cycloxygenase inhibitor), nordihydroguaiaretic acid (lipoxygenase inhibitor) and miconazole (epoxygenase inhibitor) could partly inhibit the AA induced toxicity in DIV3 cells but had no effect on DIV12 cells. Treatment with H7 (protein kinase C inhibitor) or AM281 (cannabinoid receptor antagonist) had no effect on AA or ANA induced toxicity on DIV3 cells. However,H7 partly decreased AA toxicity on DIV12 cells and no effect on DIV3 cells. We further determined the toxic effect of AA on the differentiated PC12 cell induced by nerve growth factor(NGF). AA concentration-dependent produced cell death. Tunnel assay studies showed that the AA-induced cell death including apoptosis. On the other hand, low concentration of AA (1mM) increased the induction of differentiation of PC12 cell by NGF stimulation but had no effect on the neurite growth of PC12 cells.

章節目錄
中文摘要………………………………………………………………1
英文摘要………………………………………………………………4
壹、前言……………………………………………………… 6
貳、實驗材料與方法…………………………………………16
參、結果………………………………………………………24
肆、討論………………………………………………………28
附圖一……………………………………………………………… 42
附圖二……………………………………………………………… 43
參考文獻…………………………………………………………… 49
圖表目錄
圖一、花生四烯酸(AA)代謝路徑之抑制劑對AA導致體外培養3─5
天之大白鼠胚胎大腦皮質神經細胞毒性之影響………… 31
圖二、花生四烯酸(AA)代謝路徑之抑制劑對AA導致體外培養12--15
天之大白鼠胚胎大腦皮質神經細胞毒性之影響………… 32
圖三、Anandamide代謝路徑之抑制劑對anandamide導致體外培養3─5天之大白鼠胚胎大腦皮質神經細胞毒性之影響………33
圖四、Anandamide代謝路徑之抑制劑對anandamide導致體外培養12--15天之大白鼠胚胎大腦皮質神經細胞毒性之影響……34
圖五、花生四烯酸(AA)對PC12細胞之毒性影響 (24H)………….35
圖六、花生四烯酸(AA)對PC12細胞數目之影響 (24H)………….36
圖七、AA對PC12細胞毒性之影響。…………………………….. 37
圖八、AA對於造成PC12細胞apoptosis之影響。………………. 38
圖九、AA對於PC12細胞[3H]thymidine incorporation之影響。………………………………………………………………….39
圖十、AA處理24小時在經NGF處理七天之PC12細胞所引起之毒性。………………………………………………………………….40
圖十一、AA對於NGF處理七天之PC12細胞apoptosis之影響... 41
圖十二、PC12細胞經各種濃度AA處理後,以TUNEL與Hoechst33258染色。………………………………………………………………...44
圖十三、PC12細胞經NGF與各種濃度AA處理後,以TUNEL與Hoechst33258染色。…………………………………………………46
圖十四、PC12細胞以NGF和NGF與AA 1mM合併處理……… 48
References:
Anglade P VS, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol 12:25-31.
Bazan NG, Jr., Rakowski H (1970) Increased levels of brain free fatty acids after electroconvulsive shock. Life Sci 9:501-507.
Chen Q, Galleano M, Cederbaum AI (1998) Cytotoxicity and apoptosis produced by arachidonic acid in HepG2 cells overexpressing human cytochrome P-4502E1 [see comments]. Alcoholism: Clinical & Experimental Research 22:782-784.
DE B (1995) Neural apoptosis. Ann Neurol 38:839-851.
Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946-1949.
Dhopeshwarkar GA, Subramanian C (1976) Intracranial conversion of linoleic acid to arachidonic acid: evidence for lack of delta8 desaturase in the brain. Journal of Neurochemistry 26:1175-1179.
Dichter MA, and Tishler, A. S. (1977) Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat PC12 cell line. Nature 268:501-504.
Greene LA aT, AS. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Cell Biology 73:2424-2428.
Greene LaR, G. (1977) Synthesis,storage and release of acetylcholine by a PC12 cell line. Nature 268:349-351.
Heumann R, Korsching,S., Scott,J., andThoenen, H. (1984) Relationship between levels of nerve growth factor and its mesenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J 3:3182-3189.
Huff K, End, D., and Guroff ,G. (1981) NGF-induced alteration in the response of PC12 cells to epidermal groeth factor. j Cell Biol 88:189-198.
Kapus A, Romanek R, Grinstein S (1994) Arachidonic acid stimulates the plasma membrane H+ conductance of macrophages. Journal of Biological Chemistry 269:4736-4745.
Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Progress in Neurobiology 46:607-636.
Landreth GE, and Shooter, E M. (1980) Nerve growth factor receptors on PC12 cells. Peroc Natl Acad Sci 77:4751-4755.
Ohnishi T, Posner JB, Shapiro WR (1992) Vasogenic brain edema induced by arachidonic acid: role of extracellular arachidonic acid in blood-brain barrier dysfunction. Neurosurgery 30:545-551.
Okuda S, Saito H, Katsuki H (1994) Arachidonic acid: toxic and trophic effects on cultured hippocampal neurons. Neuroscience 63:691-699.
Perlman RL, Sheard BE, Tischler AS, Kwan PW (1982) Monensin depletes PC12 pheochromocytoma cells of catecholamines and of chromaffin-type granules. Neuroscience Letters 29:177-182.
Portera-Cailliau C HJ, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci:3775-3787.
Pozzan T, Di Virgilio, F, Visentini L. M., and Meldolesi, J. (1986) Activation of muscarinic receptors in PC12 cells. Biochem J 234:547-553.
Rizzo MT, Yu W (1999) Arachidonic acid induces endothelin-1 gene expression in vascular endothelial cells. Journal of Cellular Biochemistry 75:724-733.
Savill J FV, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131-136.
Shen M, Piser TM, Seybold VS, Thayer SA (1996) Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 16:4322-4334.
Shinomura T, Asaoka Y, Oka M, Yoshida K, Nishizuka Y (1991) Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: its possible implications. Proc Natl Acad Sci U S A 88:5149-5153.
Smale G NN, Brady DR, Finch CE, Horton WE, Jr. (1995) Evidence for apoptotic cell death in Alzheimer's disease. Exp Neurol 133:225-230.
Tence M, Cordier J, Premont J, Glowinski J (1994) Muscarinic cholinergic agonists stimulate arachidonic acid release from mouse striatal neurons in primary culture. Journal of Pharmacology & Experimental Therapeutics 269:646-653.
Thomas BF, Wei X, Martin BR (1992) Characterization and autoradiographic localization of the cannabinoid binding site in rat brain using [3H]11-OH-delta 9-THC-DMH. J Pharmacol Exp Ther 263:1383-1390.
Wartmann M, Campbell D, Subramanian A, Burstein SH, Davis RJ (1995) The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett 359:133-136.
Watanabe K, Tamaru N, Takihara H, Yoshida M (1994) Syosaiko-to and saiboku-to (Chinese-Japanese herbal medicine) suppress the release of arachidonic acid metabolites from cultured porcine pulmonary artery endothelial cells. Journal of Ethnopharmacology 43:191-196.
Watanabe T, Asano T, Shimizu T, Seyama Y, Takakura K (1988) Participation of lipoxygenase products from arachidonic acid in the pathogenesis of cerebral vasospasm. Journal of Neurochemistry 50:1145-1150.
Walker PR, Kokileva L, LeBlanc J, Sikorska M (1993) Detection of the initial stages of DNA fragmentation in apoptosis. Biotechniques 15:1032-1040.
Rink A, Fung KM, Trojanowski JQ, Lee VM, Neugebauer E, McIntosh TK (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 147:1575-1583.
Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251-306

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top