跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴明成
研究生(外文):Lai-ming-cherng
論文名稱:長期給予母鼠嗎啡對其所生幼鼠腦中NMDA受體亞型1A與2A的影響
論文名稱(外文):Effect of chronic treatment ofmorphine on expression ofNMDA receptor in the developing rat
指導教授:葉健全葉健全引用關係
指導教授(外文):Geng-Chang Yeh
學位類別:碩士
校院名稱:台北醫學院
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:87
中文關鍵詞:對位甲基左旋天門冬酸受體嗎啡新生幼鼠
外文關鍵詞:NMDA receptormorphineneonatal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
嗎啡在在臨床上是被用來作為止痛劑。但它的臨床作用經常被侷限於它易於產生藥物的依賴性及耐受性,一旦嗎啡被停用後即會產生令人難受的戒斷現象。嗎啡與它的衍生物如海洛因,常因受到濫用而造成成嚴重的社會問題。在如今婦女吸毒的比例也有增加的趨勢。若婦女在懷孕期間,依舊吸食嗎啡常會使其所生的下一代有不良的影響,在短期的症狀而言,有新生時的嗎啡脫癮症狀的產生與高死亡率。而長期而言,在出生後幾年其行為與學習常比正常的小孩來的遲緩,顯示了嗎啡對於腦部發育有一定程度的影響。因此對於預防新生兒嗎啡脫癮症狀以及瞭解嗎啡對於發育中的腦部所造成的毒性作用是非常重要的一個工作。過去本實驗室曾經發現嗎啡組的初生幼鼠在出生後第14天腦中大腦皮質以及海馬迴之N-methyl-D-aspartate receptor(NMDA receptor, 是一種興奮性氨基酸接受體之一)的密度與控制組相比在出生後第14天時有較低的情形,但此一情形到30天時則又回復正常。更進一步的利用西方墨點法則發現了嗎啡組在幼鼠出生後第7天及第14天其腦部各腦區的NMDA受體各個亞型皆有減量調控的情形但在第30天及60天時則沒有發生。為此我們推論長期給予母鼠嗎啡確實會導致其所生幼鼠腦中的NMDA受體亞型發生減量調控,然此一減量調控是因為含有NMDA受體的神經細胞數目的減少,還是只是因神經細胞上的NMDA受體亞型的表現量減少?因此本研究在相同的動物模式下,利用免疫組織染色法來計算這些幼鼠腦部在cortex、hippocampus CA1、hippocampus CA3、dentate gyrus、thalmus、mid brain、caudate putamen、global pallidus及accumbens nucleus各腦區含有NMDA受體亞型1A、2A的神經細胞數目並半定量其密度。結果我們發現在第7、14、30天的幼鼠在cortex、hippocampus CA1、hippocampus CA3、dentate gyrus、thalmus、mid brain、caudate putamen、global pallidus及accumbens nucleus 各腦區含有NMDA受體亞型1A與2A的神經細胞數目與正常幼鼠相較並沒有減少。但是卻可發現在PND7時嗎啡組的密度在cortex分別下降了69.7±11.3%及64.6±12.2%、而hippocampus CA1分別下降了74.7±10.1%、及65.6±11.3%,在hippocampus CA3與dentate gyrus的NR1A與NR2A則分別下降了72.6 ±13.1%與65.7±15.23%、caudate putamen分別下降34.6±11.1%、54.6±11.5% 而在accumbens nucleus則沒有差異而在PND14時嗎啡組在cortex分別下降了64.4±12.4%及54.3±10.1%、而hippocampus CA1分別下降了78.6±11.5%及77.6±21.4%,在hippocampus CA3與dentate gyrus的NR1A與NR2A則分別下降了62.3 ±14.8%與72.4±11.4%、caudate putamen分別下降32.6±14.2%、42.6±13.1% 。此結果與過去本實驗利用西方墨點法與受體結合實驗的結果相符合。由此可知長期暴露在嗎啡底下的幼鼠確實會造成其腦部cortex、hippocampus CA1、hippocampus CA3、dentate gyrus與caudate putamen等各區神經細胞上NR1A與NR2A的減量調控但此一減量調控並不會造成神經細胞的數目上的減少。
Long-term neuropsychological abnormality has been documented in child born to morphine addicted mothers, but the mechanism of this phenomenon until now is not clear. Our previous studies found that ontogenic expression of the NMDA receptor in this rats is different to that of control rat by lacking an overshooting of NMDA receptor density on PND14.We also found that the expression of NMDA receptor subunit, namely, ( NR1A , NR2A , NR2B , NR2C ) proteins , in the cortex, hippocampus and striatum of morphine group rats is significantly less than at PND7 and PND14 as compare to that of control group. To further explore what kinds of NMDA receptor subunits are changed,our previous study had used western blotting to examine the expression of the NMDA receptor subunits .
However we have known what kinds kinds of NMDA receptor subunits are changed but we still don’t know wheather the decrease of the NMDA subtypes’ expression on morphine group rats compared with normal group rats on PND7 and PND14 is from the decrease of the cell number of neuron having NMDA receptor or the expression of NMDA subuit in each neuron is decreased. To address this tissue we used immunohistochemistry to examine the immunoreactivity of NR1A、NR2A in the brain of rats born to morphine-treated dam rats. We found that the number of cell containing NR1A and NR2A in the region of cortex、hippocampus CA1、hippocampus CA3、dentate gyrus、thalmus、mid brain、caudate putamen、global pallidus and accumbens nucleus of morphine rats were not different to that of control rat. On the contrast , in the cortex、hippocampus CA1、hippocampus CA3、dentate gyrus、caudate putamen the density of NR1A and NR2A of morphine rats was dramatically decreased on PND7 and PND14 as compare to that of control group.
These results demonstrated that that rats born to chronic morphine addicted dam rats induce downregulation of NMDA receptor subunits and does not cause the decrease of the cell number of neuron having NMDA receptor.
章節目錄
中文摘要 ………………………………………………......1
英文摘要 ………………………………………………......4
壹、前言 ……………………………………………….6
貳、實驗目的 ………………………………………….16
參、實驗材料及方法 …………………………………17
肆、實驗結果 …………………………………………26
伍、討論 ………………………………………………31
參考文獻 …………………………………………….......82
表目錄
Table 1.嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在Cortex1區神經細胞數目量化統計表……………………...……59
Table 2.嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在Cortex2區神經細胞數目量化統計表……………………...……60
Table 3.嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在Cortex3區神經細胞數目量化統計表……………………...……61
Table 4.嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在Cortex4區神經細胞數目量化統計表……………………...……62
Table 5.嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在Cortex5區神經細胞數目量化統計表…………………...………63
Table 6.嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在Hippocampus CA1區神經細胞數目量化統計表……….….…..…64
Table 7. 嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在
Hippocampus CA3與Dentate gyrus區神經細胞數目量化統計表
……………………………………………………….………65
Table8. 嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天在
Caudate putamen區神經細胞數目量化統計表…….………..66
Table 9. 嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天
在Global pallidus區神經細胞數目量化統計表……………...67
Table 10. 嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天
在thalmus區神經細胞數目量化統計表………………..…….68
Table 11. 嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天
在mid brain區神經細胞數目量化統計表………………….69
Table 12. 嗎啡組(mor)與控制組(con)分別於幼鼠出生後7、14、30天
在Accumbens nucleus區神經細胞數目量化統計表…….…….70
圖目錄
圖一:腦組織冠狀切片圖………………………………………………..35
圖二:腦組織冠狀切片圖………………………………………………..36
圖三:腦組織冠狀切片圖………………………………………………..37
圖四:為證明我們所使用的NMDA受體亞型1A與2A的抗體為單一抗原的表現………………………………………………………….…..38
圖五:為證明所利用免疫組織染色法染出之組織的專一性故做不加一級抗體的對照實驗………………………………….……………….…..39
圖六:幼鼠出生後第七天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中cortex區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的200x的顯微照相圖…….….……....40
圖七:幼鼠出生後第七天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中cortex區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。……………….41
圖八:幼鼠出生後第14天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中cortex區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。.……………….42
圖九:幼鼠出生後第30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中cortex區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。.……………….43
圖十:幼鼠出生後第七天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA1區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。…..….44
圖十一:幼鼠出生後第14天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA1區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。……………………………………………………………….45
圖十二:幼鼠出生後第30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA1區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。……….46
圖十三: 幼鼠出生後第七天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA3與dentate gyrus區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。………………………………………………….…..….47
圖十四:幼鼠出生後第14天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA3與dentate gyrus區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。………………………..………………………………….48
圖十五:幼鼠出生後第30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA3與dentate gyrus區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。…………………………………………………….……….49
圖十六:幼鼠出生後第七天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Caudate Putamen區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖……………………………………………………...……….50
圖十七:幼鼠出生後第14天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Caudate Putamen區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。………………………………………………………….51
圖十八:幼鼠出生後第30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Caudate Putamen區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。……………………………………………….………….52
圖十九:幼鼠出生後第七天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Accumbens nucleus區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。………………………………………………………..….53
圖二十:幼鼠出生後第14天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Accumbens nucleus區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。..…………………………………………………….….54
圖二十一:幼鼠出生後第30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Accumbens nucleus區的NMDA受體亞型1A、2A免疫組織染色法與H-E染色法表現的100x的顯微照相圖。……………………………………………….….55
圖二十二:幼鼠出生後第7、14、30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA1區的NMDA受體亞型1A免疫組織染色法100x的顯微照相圖。………….………………………………….……….….56
圖二十三:幼鼠出生後第7、14、30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA1區的NMDA受體亞型2A免疫組織染色法的100x的顯微照相圖。……………………………………………………….….57
圖二十四:幼鼠出生後第7、14、30天,分別在控制組(con)(A、C、E)和嗎啡組(mor)(B、D、F)的幼鼠腦中Hippocampus CA1區的NMDA受體亞型H-E染色法表現的100x的顯微照相圖。…………………………………………….…….………58
Fig 1. The density of NMDA 1A on the cortex of control and morphine rats …………………………………………………………….71
Fig 2. The density of NMDA 1A on the hippocampus CA1 of control and morphine rats. ..…..…..…..…..…..…..…..…..… ..……………..72
Fig 3. The density of NMDA 1A on the hippocampus CA3 of control and morphine rats. .….…..….…....…………………………………73
Fig 4. The density of NMDA 1A on the caudate putamen of control and morphine rats……………………………………………………..74
Fig 5. The density of NMDA 1A on the accumbens nucleus of control and morphine rats. ……………………………………………………75
Fig 6. The density of NMDA 2A on the cortex of control and morphine
rats. ……………………………………………………………….76
Fig 7. The density of NMDA 2A on the hippocampus CA1 of control and morphine rats. ……………………………………………………..77
Fig 8. The density of NMDA 2A on the hippocampus CA3 of control and morphine rats. ……………………………………………………..78
Fig 9. The density of NMDA 2A on the Caudate Putamen of control and morphine rats. ……………………………………………………..79
Fig 10. The density of NMDA 2A on the accumbens nucleus of control and morphine rats. ……………………………………………………..80
Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends in Neurosciences 15:333-339.
Benke D., Wenzel A., Scheuer L., Fritschy J.M., and Mohler H.: Immunobiochemical characterization of the NMDA-receptor subunit NR1 in the developing and adult rat brain. J. Recept. Signal Transduction Res. 15(1-4): 393-411, 1995
Carmignoto G. and Vicini S.: Activity-dependent decreases in NMDA receptor responses during development of the visual cortex. Science 258: 1007-1011, 1992
Constantine-Paton M., Cline H.T., and Debskio E.: Patterned activity synaptic convergence and the NMDA receptor in developing visual pathway. Annu. Rev. Neurosci. 10: 237-280, 1987
Crair M.C. and Malenka R.C.: A critical period for long-term potentiation at thalamocortical synapses. Nature 357: 325-328, 1995
Dafny N, Dougherty PM (1993) Noninvasive subthreshold auricular electrical stimulation reduces the severity of precipitated and abrupt opiate withdrawal. Brain Research Bulletin 31:491-492.
Evans RH, Watkins JC (1981) Pharmacological antagonists of excitant amino acid action. Life Sci 28:1303-1308.
Ferkany JW, Borosky SA, Clissold DB, Pontecorvo MJ (1988) Dextromethorphan inhibits NMDA-induced convulsions. European Journal of Pharmacology 151:151-154.
Fukuda A, Prince DA (1992) Excessive intracellular Ca2+ inhibits glutamate-induced Na(+)-K+ pump activation in rat hippocampal neurons. Journal of Neurophysiology 68:28-35.
Hutchinson M, Kosterlitz HW, Leslie FM, Waterfield AA (1975) Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. British Journal of Pharmacology 55:541-546.
Jaffe J.H. and Martin W.R.: Opioid analgesics and antagonists, in the
pharmacological basis of therapeutics. Edited by gilman, A.G., Goodman, L.S. and Gilman, A. 8th ed. 485-521, 1991
Jones AW (1984) Disposition of ethanol and its effect on rectal temperature in morphine-dependent, morphine-abstinent and morphine-naive rats. Acta Pharmacologica et Toxicologica 54:333-339.
Kay DC (1975) Human sleep during chronic morphine intoxication. Psychopharmacologia 44:117-124.
Kleckner NW, Dingledine R (1991) Regulation of hippocampal NMDA receptors by magnesium and glycine during development. Brain Res Mol Brain Res 11:151-159.
Koga Y, Inukai T (1981) Assessment of physical dependence-inducing capacity of narcotic agonists and antagonists in rats by intermittent infusion technique. Psychopharmacology 73:236-239.
Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95-97.
Koyuncuoglu H, Gungor M, Sagduyu H, Aricioglu F (1990) Suppression by ketamine and dextromethorphan of precipitated abstinence syndrome in rats. Pharmacology, Biochemistry & Behavior 35:829-832.
Lewis MJ, Margules DL (1975) Opioid-reinforced operant behavior: selective suppression by alpha-methyl-para-tyrosine. Journal of Comparative & Physiological Psychology 88:519-527.
Linseman MA (1976) Effects of lesions of the caudate nucleus on morphine dependence in the rat. Pharmacology, Biochemistry & Behavior 5:465-472.
Manning BH, Mao J, Frenk H, Price DD, Mayer DJ (1996) Continuous co-administration of dextromethorphan or MK-801 with morphine: attenuation of morphine dependence and naloxone-reversible attenuation of morphine tolerance. Pain 67:79-88.
Mao J, Price DD, Mayer DJ (1995) Experimental mononeuropathy reduces the antinociceptive effects of morphine: implications for common intracellular mechanisms involved in morphine tolerance and neuropathic pain [see comments]. Pain 61:353-364.
Mao J, Price DD, Caruso FS, Mayer DJ (1996) Oral administration of dextromethorphan prevents the development of morphine tolerance and dependence in rats. Pain 67:361-368.
Marek P, Mogil JS, Sternberg WF, Panocka I, Liebeskind JC (1992) N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 blocks non-opioid stress-induced analgesia. II. Comparison across three swim-stress paradigms in selectively bred mice. Brain Research 578:197-203.
Mayer ML, MacDermott AB, Westbrook GL, Smith SJ, Barker JL (1987) Agonist- and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III. J Neurosci 7:3230-3244.
Meldrum B (1990) Protection against ischaemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovascular & Brain Metabolism Reviews 2:27-57.
Mello NK, Bree MP, Mendelson JH (1981) Buprenorphine self-administration by rhesus monkey. Pharmacology, Biochemistry & Behavior 15:215-225.
Moriyoshi K., Masu M., Ishii T., Shigemoyo R., Mizuno N.,and Nakanishi S.: Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31-37, 1991
Monyer H., Burnashev N., Laurie D.J., Sakmann B., and Seeburg P.H.: Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529-540, 1994
Mori H. and Mishina M.: Structure and function of the NMDA receptor channel. Neuropharmacol. 34: 1219-1237, 1995
Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience 9:3040-3057.
Morris RG, Davis S, Butcher SP (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences 329:187-204.
Nestler E.J., Erdos J.J., Terwilliger R., Duman R.S., and Tallman J.F.: Regulation of G protein by chronic morphine in the rat locus coeruleus. Brain Res. 476: 230-239, 1989
Olney JW, Price MT, Samson L, Labruyere J (1986) The role of specific ions in glutamate neurotoxicity. Neurosci Lett 65:65-71.
Prince DA, Feeser HR (1988) Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neuroscience Letters 85:291-296.
Rabacchi S, Bailly Y, Delhaye-Bouchaud N, Mariani J (1992) Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256:1823-1825.
Rasmussen K (1991) Afferent effects on locus coeruleus in opiate withdrawal. Progress in Brain Research 88:207-216.
Rasmussen K, Fuller RW, Stockton ME, Perry KW, Swinford RM, Ornstein PL (1991) NMDA receptor antagonists suppress behaviors but not norepinephrine turnover or locus coeruleus unit activity induced by opiate withdrawal. European Journal of Pharmacology 197:9-16.
Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic--ischemic brain damage. Annals of Neurology 19:105-111.
Sheng M., Cummings J., Roldan L.A., Jan Y.N., and Jan L.Y.: Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144-147, 1994
Siman R, Noszek JC, Kegerise C (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. Journal of Neuroscience 9:1579-1590.
Smith AA (1975) Interaction of biogenic amines with ethanol. Advances in Experimental Medicine & Biology 56:265-275.
Stolerman IP, Johnson CA, Bunker P, Jarvik ME (1975) Weight loss and shock-elicited aggression as indices of morphine abstinence in rats. Psychopharmacologia 45:157-161.
Takemori AE, Loh HH, Lee NM (1992) Suppression by dynorphin A-(1-13) of the expression of opiate withdrawal and tolerance in mice. European Journal of Pharmacology 221:223-226.
Tanganelli S, Antonelli T, Morari M, Bianchi C, Beani L (1991) Glutamate antagonists prevent morphine withdrawal in mice and guinea pigs. Neuroscience Letters 122:270-272.
Taylor JR, Elsworth JD, Garcia EJ, Grant SJ, Roth RH, Redmond DE, Jr. (1988) Clonidine infusions into the locus coeruleus attenuate behavioral and neurochemical changes associated with naloxone-precipitated withdrawal. Psychopharmacology 96:121-134.
Tempel A., Habas J., Paredes W., and Barr G.A.: Morphine-induced down-regulation of m-opioid receptors in neonatal rat brain. Developmental Brain Res. 41: 129-133, 1988
Thornton SR, Wang AF, Smith FL (1997) Characterization of neonatal rat morphine tolerance and dependence. European Journal of Pharmacology 340:161-167.
Valentino RJ, Wehby RG (1989) Locus ceruleus discharge characteristics of morphine-dependent rats: effects of naltrexone. Brain Research 488:126-134.
Vargas GC, Piles RS, Vidyasagar D (1975) Effect of maternal heroin addiction on 67 liveborn neonates. Clin. Pediatr. 14:751-757.
Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165-204.
Wenzel A., Fritschy J.M., Mohler H., and Benke D.: NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem. 68: 469-478, 1997
Wenzel A., Villa M., Mohler H., and Benke D.: Developmental and rigional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J. Neurochem. 66: 1240-1248, 1996
Williams JL, Drugan RC, Maier SF (1984) Exposure to uncontrollable stress alters withdrawal from morphine. Behavioral Neuroscience 98:836-846.
Wilson G.W., Desmond M.M., Verniaud W.M.: Early development of infants of heroin-addicted mothers. Am J Dis Child 126: 457, 1973
Wilson G.S., McCreary R., Kean J., and Baxter J.C.: The development of preschool children of heroin-addicted mothers: a controlled study. Pediatrics 63: 135-157, 1979
Windh RT, Little PJ, Kuhn CM (1995) The ontogeny of mu opiate tolerance and dependence in the rat: antinociceptive and biochemical studies. Journal of Pharmacology & Experimental Therapeutics 273:1361-1374.
Ying SX, Cheng JS (1995) Neuroprotective effects of dextromethorphan against transient cerebral ischemia/reperfusion injury in gerbils. Chung-Kuo Yao Li Hsueh Pao - Acta Pharmacologica Sinica 16:133-136.
Yu W, Hao JX, Xu XJ, Wiesenfeld-Hallin Z (1997) The development of morphine tolerance and dependence in rats with chronic pain. Brain Research 756:141-146.
Zhong J., Arrozza D.P., Williams K., Pritchett D.B., and Molinoff P.B.: Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J.Neurochem. 64: 531-539, 1995
Zola EM, McLeod DC (1983) Comparative effects and analgesic efficacy of the agonist-antagonist opioids. Drug Intelligence & Clinical Pharmacy 17:411-417.
Zelson C, Rubio E, Wasserman E (1971) Neonatal narcotic addiction:10 year observation. Pediatrics. 48:178-191.
Zhong J., Arrozza D.P., Williams K., Pritchett D.B., and Molinoff P.B.: Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J.Neurochem. 64: 531-539, 1995
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊