跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐弘昆
研究生(外文):Hun-Kung Hsu
論文名稱:YC-1對於人類血管內皮細胞的生長抑制作用
論文名稱(外文):The anti-proliferation effect of YC-1 in human vascular endothelial cells.
指導教授:李文森李文森引用關係
指導教授(外文):Wen-Sen Lee
學位類別:碩士
校院名稱:台北醫學院
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:76
中文關鍵詞:血管新生內皮細胞人類臍帶靜脈內皮細胞細胞週期停滯
外文關鍵詞:angiogenesisendothelial cellHUVEC(Human Umbilical Vein Endothelial Cell)cell cycle arrest
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:2
中文摘要
本篇論文的主旨在研究一藥物guanylyl cyclase activator-YC-1對於人類臍帶靜脈內皮細胞(human umbilical vein endothelial cell, HUVEC)在體外(in vitro)生長的影響,並且探討其可能的作用機制。我們使用的實驗材料為初代培養之人類臍靜脈內皮細胞,並且其繼代培養次數皆維持在7代之內。實驗研究發現,YC-1 在5μM的濃度下即對HUVEC的增生產生抑制作用,且其作用強度以劑量相關(dose-dependent)的方式增加。以H3-thymidine incorporation的實驗觀察發現,加藥24小時後,YC-1明顯的抑制內皮細胞DNA的合成。利用流式細胞儀(flowcytometry)分析細胞週期,發現YC-1會造成內皮細胞的細胞週期停滯在G0/G1 phase。利用western blot發現,內皮細胞以YC-1處理時,可以觀察到和細胞週期停滯(cell cycle arrest)有關的蛋白p21及p27比對照組有明顯的增加,但是cyclin A,cyclin D1,cyclin D3,cyclin E,cdk2及cdk4的表現量卻沒有改變。我們利用kinase assay觀察cdk2以及cdk4的活性,發現在YC-1處理之下,cdk2的kinase活性有明顯的被抑制現象,但cdk4的kinase活性反而增加;同時利用anti-cdk2 及anti-cdk4 antibody進行免疫沉澱法(immunoprecipitation)發現加藥組中與cdk-cyclin complex結合的p21量的確比對照組高,因而抑制了cdk2的活性。根據這個結果推測,YC-1可能經由抑制了對內皮細胞增生最重要的訊號傳遞路徑,MAP kinase pathway,而產生其作用,實驗結果卻發現,YC-1反而會促進p44/42 MAP kinase的磷酸化(phosphorylation)。我們接著懷疑,YC-1對內皮細胞的作用,是否經由活化guanylyl cyclase,而增加細胞內cGMP的量所造成?於是我們以guanylyl cyclase inhibitor─ODQ,methylene blue,以及protein kinase G inhibitor(PKG) inhibitor─KT5823來處理內皮細胞,結果發現它們並不能阻斷YC-1的作用;同時,我們也利用一具細胞膜通透性的cGMP類似物─8-bromo-cGMP,來模擬內皮細胞內cGMP大量增加時的情形,結果,在所測試的劑量之下,8-bromo-cGMP都不會有抑制內皮細胞DNA合成以及細胞增生的情況。過去曾有論文指出,YC-1除了會增加cGMP外,亦會增加胞內的cAMP。當我們以cAMP類似物8-bromo-cAMP處理內皮細胞,發現8-bromo-cAMP對細胞增生有較強的抑制作用;但是當我們加入adenylyl cyclase inhibitor─2’,5’-DDA以及protein kinase A inhibitor(PKA) inhibitor─KT5720,它們卻無法阻斷YC-1的作用。另外,過去亦發現YC-1會活化eNOS從而增加NO生成,因此我們給予NOS抑制劑L-NAME,實驗結果發現L-NAME亦無法阻斷YC-1對內皮細胞DNA合成的抑制作用及抗細胞增生作用。從以上結果顯示,YC-1是經由誘導胞內p21及p27的增加,而抑制cdk2的kinase activity,繼而導致內皮細胞細胞週期的停滯;但此作用並非透過抑制MAP kinase活性,或經由活化cGMP、cAMP 、NO pathways而來。
Abstract
The aim of this thesis is to examine the antiproliferation effect of guanylyl cyclase activator, YC-1, in human umbilical vein endothelial cells (HUVEC) and it’s possible underlying mechanism. Our data demonstrates that YC-1 caused a concentration-dependent inhibition in HUVEC proliferation. The results of 3H-Thymidine incorporation showed that YC-1 significantly decreases endothelial cell DNA synthesis. Flow cytometric analysis demonstrated that treatment of HUVEC with YC-1 arrested the cell at the G0/G1 phase of the cell cycle. Western blot analysis showed that treatment of HUVEC with YC-1 for 18h increased the levels of p21 and p27 protein, while the levels of cyclin A, cyclin D1, cyclin D3, cyclin E, cdk2 and cdk4 protein were not changed. Kinase assay showed that YC-1 increased the p21/cdk2 association, which in turn inhibited the cdk2 enzyme activity. Interesting, YC-1 increases the level of phospho-p44/42 MAP kinase. To examine whether guanylyl cyclase activation is involved in the YC-1-mediated antiproliferation in HUVEC, effects of YC-1 were measured in the presence or absence of guanylyl cyclase inhibitors (ODQ and methylene blue) or PKG inhibitor (KT5823). The results showed that YC-1 inhibited HUVEC proliferation to the same extent, regardless whether ODQ, methylene blue, or KT5823 was present or not. Moreover, administration of the cell membrane permeable cGMP analogue, 8-bromo-cGMP, which mimics the cGMP effect, does not cause any retardation in endothelial cell proliferation even at the concentration of 100uM. Since YC-1 has been shown to increase the intracellular cAMP level, we examined the antiproliferation effect of cAMP analogue, 8-bromo-cAMP, in endothelial cells and found that it strongly induced antiproliferation in endothelial cells. However, adenylyl cyclase inhibitor (2’,5’-DDA) and protein kinase A (PKA) inhibitor (KT5720) did not change the antiproliferation effect caused by YC-1. YC-1 also has been shown to activate NOS, whichin turn increases NO concentration in endothelial cell, we tested if the NOS inhibitor, L-NAME, can block the antiproliferation effect of YC-1 in HUVEC. Our results revealed that L-NAME did not reverse the YC-1 ability in HUVEC. In conclusion, the results of the present study suggest that YC-1 interrupts the cell cycle progression and proliferation of human endothelial cells by increasing the protein levels of p21 and p27 via apathway independent of p44/42 MAP kinase, cGMP, cAMP, or NO.
目 錄
中文摘要 1
英文摘要 4
緒論 6
實驗材料與方法 17
實驗結果 31
實驗結果圖表 39
討論與結論 57
附圖 63
參考文獻 69
Reference
Arnal, J.F., Tack, I., Besombes, J.P., Pipy, B., and Negre-Salvayre, A. (1996) Nitric oxide and superoxide anion production during endothelial cell proliferation. Am. J. Physiol. 271,C1521-C1526
Benjamin, L.E., Golijanin, D., Itin, A., Pode, D., and Keshet, E. (1999) Selective ablation of immature blood vessels in established tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103,159-165
Brown, L.F., Dvorak, A.M., and Dvorak, H.F. (1989) Leaky vessels, fibrin deposition, and fibrosis:a sequence of events common to solid tumors and to many other types of diseases. Ann. Rev. Respir. Dis. 140,1104-1107
Cano, E., and Mahadevan, LC. (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem Sci. 20,117-22.
Ceneviva, G.D., Tzeng, E., Hoyt, D.G., Yee, E., Gallagher, A., Engelhardt, J.F., Kim, Y.M., Billiar, T.R., Watkins, S.A., and Pitt, B.R. (1998) Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells. Am. J. Physiol. 275,L717-L728
Cotran, R.S., Kumar, V., and Collins, T. (1999) Pathology Basis of Disease 6 edition
Cross, M.J. and Claesson-Welsh, L. (2001) FGF and VEGF function in angiogenesis:signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22,201-207
Darland, D.C., and D’Amore, P.A. (1999) Blood vessel maturation : vascular development comes of age. J. Clin. Invest.103,157-158
Deng C.X., Wynshaw-Boris A., Shen M.M., Daugherty C., Ornitz D.M., and Leder P. (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev. 8,3045-3057
Friebe, A., and Koesling, D. (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol. Pharmacol. 53,123-127
Friebe A., Schultz G., and Koesling D. (1996) Sensitizing soluble guanylyl cyclase to become a highly CO- sensitive enzyme. EMBO J. 15,6863-6868
Guh, J.H., Hwang, T.L., Ko, F.N., Chueh, S.C., Lai, M.K., and Teng, C.M. (1998) Antiproliferative effect in human prostatic smooth muscle cells by nitric oxide donor. Mol. Pharmacol. 53,467-474
Hiraoka, N., Allen, E., Apel, I.J., Gyetko, M.R., and Weiss, S.J. (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95,365-377
Hood, J., and Granger, H.J. (1998) Protein kinase G mediates vascular endothelial growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J. Biol. Chem. 273,23504-23508
Iruela-Arispe, M.L., and Dvorak, H.F. (1997) Angiogenesis:a dynamic balance of stimulators and inhibitors. Thromb. and Haemo. 78(1),672-677
Ishida, A., Sasaguri, T., Kosaka, C., Nojima, H., and Ogata, J. (1997) Induction of the cyclin-dependent kinase inhibitor p21Sdi1/Cip1/Waf1 by nitric oxide-generating vasodilator in vascular smooth muscle cells. The J. Biol. Chem. 272,10050-10057
Isner, J.M., and Asahara, T. (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103,1231-1236
Jaye M., Schlessinger J., and Dionne C.A. (1992) Fibroblast growth factor receptor tyrosine kinases : molecular analysis and signal transduction. Biochim. Biophys. Acta 1135,185-199
John M.K. and Joseph A. (1996) Sounding the alarm:protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 271, 24313 -24316
Kelly B., Wolfe K. G., and Roberts J. M. (1998) Identification of a substrate-tatgeting domain in cyclin E for phohphorylation of the retinoblastoma protein. Proc. Natl. Acda. Sci. U. S. A. 95,2535-2540
Ko, F.N., Wu, C.C., Kuo, S.C., Lee, F.Y., and Teng, C.M. (1994) YC-1, a novel activator of platalet guanylate cyclase Blood 84,4226-4233
Laurence Beck, JR., and D’amore, P.A. (1997) Vascular development : cellular and molecular regulation. FASEB J. 11,365-373
Lee, M.H., Reynisdottir, I., and Massague, J. (1995) Cloning of p53Kip2,a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes. Dev. 9,639-649
Lee, S.H., Schloss, D.J., and Swain, J.L. (2000) Maintenance of vascular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem. 275,33679-87.
Mayer, B., Brunner, F., and Schmidt, K. (1993) Inhibition of nitric oxide synthesis by methylene blue. Biochem. Pharmacol. 45,367-373
Mulsch, A., Bauersachs, J., Schafer, A., Stasch, J.P., Kast, R., and Busse, R. (1997) Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br. J. Pharmacol. 120,681-689
Murohara, T., Witzenbichler, B., Spyridopoulos, I., Asahara, T., Ding, B., Sullivan, A., Losordo, D.W., and Isner, J.M. (1999) Role of endothelial nitric oxide synthesis in endothelial cell migration. Arterioscler. Thromb. Vasc. Biol. 19,1156-1161
Ornitz D.M. (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays 22,108-12
Papapetropoulos, A., Garcia-Cardena, G., Madri, J. A., and Sessa, W.C. (1997) Nirtic Oxide production contributes to the angiogenic properties of Vascular Endothelial Growth Factor in human endothelial cells. J. Clin. Invest. 100,3131-3139
Pipili-Synetos, E., Sakkoula, E., and Maragoudakis, M.E. (1993) Nitric Oxide is involved in the regulation of angiogenesis. Br. J. Pharmacol. 108,855-857
Risau, W. (1997) Mechanisms of angiogenesis. Nature 386,671-674
Risau, W., and Flamme, I. (1995) Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11,73-91
Sarkar, R., Gordan, D., Stanley, J.C., and Webb, R.C. (1997) Cell cycle effects of nitric oxide in vascular smooth muscle cells. Am. J. Physiol. 272,H1810-H1818
Schrammel, A., Behrends, S., Schmidt, K., Koesling, D., and Mayer, B. (1996) Characterization of 1H-[1,2,4] Oxadiazolo [4,3-a] quinoxalin-1-one as a heme-Site inhibitor of nitrix oxide-sensitive guanylyl cyclase. Mol. Pharmacol. 50,1-5
Sciorati, C., Nistico, G., Meldolesi, J., and Clementi, E. (1997) Nitric oxide effects on cell growth : GMP-dependent stimulation of the AP-1 transcription complex and cyclic GMP-independent slowing of cell cycling. Br. J. Pharmacol. 122,687-697
Shen, Y.H., Wang, X.L., Wilcken, D.E.L. (1998) Nitrix oxide induces and inhibits apoptosis through different pathways. FEBS Lett. 433,125-131
Sherr C.J., and Roberts J.M. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9,1149-63.
Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, and Klagsbrun M. (1984) Heparin affinity:purification of a tumor-derived capillary endothelial cell growth factor. Science 223,1296-1299
Shizukuda, Y., Tang, S., Yokota, R., and Ware, J.A. (1999) Vascular endothelial growth factor-induced endothelial cell migration and proliferation depend on a nitric oxide mediated decrease in protein kinase Cδ activity. Circ. Res. 85,247-256
Stein, G.S., Baserga, R., Giordano, A., and Denhardt, D.T. (1999) The molecular basis of cell cycle and growth control.
Stetler-Stevenson, W.G. (1999) Matrix metalloproteinases in angiogenesis : a moving target for therapeutic intervention. J. Clin. Invest. 103,1237-1241
Suenobu, N., Shichiri, M., Iwashina, M., Marumo, F., and Hirata, Y. (1999) Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 19,140-146
Tallquist, M.D., Soriano, P., and Klinbhoffer, R.A. (1999) Growth factor signaling pathways in vascular development. Oncogene 18,7917-7932
Vinals, F., Chambard, J.C., and Pouyssegur, J. (1999) p70 S6 Kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J. Biol. Chem. 274,26776-26782
Wohlfart, P., Malinski, T., Ruetten, H., Schindler, U., Linz, W., Schoenafinger, K., Strobe,l H., and Wiemer, G. (1999) Release of nitric oxide from endothelial cells stimulated by YC-1, an activator of soluble guanylyl cyclase. Br. J. Pharmacol 128,1316-1322
Yu, S.M., Ceng, Z.J., Guh, J.H., Lee, F.Y., and Kuo, S.C. (1995) Mechanism of antiproliferation caused by YC-1, an indazole derivative, in cultured rat A10 vascular smooth-muscle cells. Biochem. J. 306,787-792
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蔡文婷 2001a 〈幽幽身後誰堪問-殯葬改革風起雲湧〉,《光華畫報雜誌社》,第26卷第6期,頁62-67。
2. 廖文生 1987 〈社會變遷下的台灣宗教發展〉,《中國論壇》,第182期,頁17-21。
3. 游美惠 2000 〈內容分析、文本分析與論述分析在社會研究的運用〉,《調查研究》,8,頁5-38。
4. 陳志信 1997 〈尊尊與親親--試論「禮記」所反映的文化模式〉,《鵝湖》,23:2=266,頁8-20。
5. 郭文般 1987 〈台灣民間信仰的天空〉,《中國論壇》,第182期,頁26-33 。
6. 許殷宏 1998 〈高夫曼「偏差行為社會學」的教育蘊義〉,《教育研究資訊》,第6卷第4期,頁82-99。
7. 張珣 1986 〈台灣地區宗教的過去、現在與未來〉,《聯合月刊》,第64期,頁104-105。
8. 殷章甫 1991 〈我國墓地管理制度之探討及其課題〉,《社會福利》,第93期,頁18-21。
9. 李豐楙 1994 〈台灣民間禮俗中的生死關懷-一個中國式結構意義的考察〉,《哲學雜誌》,第 8期,頁32-53。
10. 余智能 1996 〈臺北市喪葬業務問題之對策與興革探討〉,《福利社會》 ,54,pp.36-49。
11. 余光弘,1985 〈A. van Gennep生命儀禮理論的重新評價〉,《中央研究院民族學研究所集刊》第六十期:頁229-257。
12. 蔡文婷 2001c 〈以墓園為禮堂-新新土公仔李慧仁〉,《光華畫報雜誌社》,第26卷第6期,頁76。