跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐茂峰
研究生(外文):Mao-Feng Hsu
論文名稱:可溶色淡之聚醯亞胺與聚醯胺醯亞胺之製備與性質探討
論文名稱(外文):SYNTHESIS AND PROPERTIES OF COLORLESS AND ORGANOSOLUBLE AROMATIC POLYIMIDES AND POLY(AMIDE-IMIDE)S
指導教授:楊金平楊金平引用關係
指導教授(外文):Chin-Ping Yang
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:107
中文關鍵詞:聚醯亞胺聚醯胺醯亞胺聚醯胺醯亞胺醯亞胺四醯亞胺二羧酸色淡
外文關鍵詞:polyimidepoly(amide-imide)poly(amide-imide-imide)tetraimide-diacidcolor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
第一部份
兩系列有機可溶性芳香族共聚醯亞胺(II(A)與II(B))是由二酐4,4'-oxydiphthalic anhydride (ODPA)與2,2-bis[4-(4-amino phenoxy)phenyl]propane (Ii)或2,2-Bis[4-(4-aminophenoxy) phenyl]hexafluoropropane(Ij)與8種易生成不溶性PI之芳香族二胺(Ia~h)配對以一般之熱烤法及化學閉環法合成。實驗結果II(A)系達NMP可溶性之最低組成莫耳比除i/a=6;i/f=2外,其餘組成(如i/b等)皆1就可;而II(B)系則除j/a=3其餘皆為1。此兩系列PI之有機溶劑溶解性佳,可溶於NMP、DMAc、DMF及DMSO等極性溶劑。經由熱烤法鑄成之兩系列薄膜(15~39μm)由UV-visible光譜之透光率及colorimeter之參數測知所有薄膜之cutoff wavelength 都在400 nm以下(357~379 nm間),b*參數值在7.12~14.31之間,而且II(B)系列皆低於II(A)系列,表示II(B)系列更色淡,且II(B)系列在高溫能保有較好transparency比II(A)系列。在機械性質方面兩系列相差不大,其斷裂點抗張強度介於88~112 MPa,伸長率介於12~28 %,起始模數在1.9~2.3 GPa之間。由DSC之測定兩系列之玻璃轉移溫度值在229~254 ℃之間。由TGA之分析結果兩系列在氮氣流與空氣中之10 %重量損失溫度皆在550 ℃以上。
第二部份
以1比2 mole比之6FDA與p-aminobenzoic acid (p-ABA)或m-ABA在DMAc/toluene中共沸結合製成二種二醯亞胺二羧酸2,2-bis[N-(4-carboxyphenyl)phthalimidyl]-hexafluoropropane (I)與2,2-bis[N-(3-carboxyphenyl)phthalimidyl]-hexafluoropropane (II),然後I與II各與10種芳香族二胺 (IIIa-j)以TPP/Py為活化劑直接聚縮合而成二系列色淡及可溶性之poly(amide-imide)s (PAI) IVa-j與Va-j。經由DMAc鑄成之薄膜(40~72μm厚)由UV-visible spectra和colorimeter之參數值測得大部份薄膜之cutoff wavelength 都在400 nm以下(361~389nm間),b*參數值在15.31~34.72之間,而且此兩系列比一般聚合物更色淡。溶劑溶解性部分幾乎二系列皆可溶於NMP、DMAc、DMF及DMSO且隨二胺成份柔軟性可溶於THF(如IVf~j與Vf~j)等,非極性溶劑。鑄膜之機械性質除IVb,d有脆性外,其抗張強度都在92~130 MPa之間,伸長率為9~27 %及起始模數在2.1~3.3 GPa之間。熱性質部分由DSC測得之Tg值在259~328℃之間,在氮氣流與空氣中之10%重量損失溫度皆在510 ℃以上。
第三部份
一系列色淡,有機溶劑易溶性之新型聚醯胺醯亞胺醯亞胺[polyamide-imide-imide (PAII)] IVa~k,係由含氟之四醯亞胺二羧酸(Tetraimide-diacid) (I)與各種芳香族二胺 (IIIa-j)以TPP/Py為活化劑直接聚縮合而成。I是由6FDA、p-ABA與4,4'-ODA以2:2:1之mole比在NMP中經由Tetraamic acid (I')然後加甲苯共沸縮合而成。各聚合物經由DMAc鑄成之IV系列薄膜由UV-visible 光譜之透光率及colorimeter之參數測知,大多數薄膜之cutoff wavelength 都在400 nm以下(376~392nm間),b*參數值在24.21~39.91之間,如與類似含6FDA結構之polyamide-imide (PAI) V系列比較大部分色澤更淡或接近,也比TMA型PAI或Kapton色淡。此系列PAII之有機溶劑溶解性佳,可溶於NMP、DMAc、DMF及DMSO等極性溶劑,部分PAII更因二胺成分之柔軟性可溶於THF等非極性溶劑。薄膜之抗張強度在93~109 MPa之間、伸長率與起始模數在8~15 %及2.0~2.8 GPa之間,表示有良好機械性質。熱性質部分皆可由DSC測出Tg值在298~344 ℃之間,10 %重量損失溫度不論在氮氣或空氣中皆在530 ℃以上。

ABSTRACT
PART 1
Two kinds of organosoluble aromatic copolyimides (II(A) and II(B) series) were prepared by the thermal and chemical cyclodehydration in pairs of the soluble polyimides for being synthesized from 4,4'-oxydiphthalic anhydride (ODPA) with 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) or 2,2-Bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (6FBAPP) and the poorly soluble polyimides for being synthesized from ODPA with eight kinds of aromatic diamines (Ia~h). According to the experimental results, II(A) series with the smallest ratios (m1/m2) of at least soluble in NMP was 1:1,shch as I(A)i/b, except that I(A)m1 i / m2 a and I(A)m1 i/ m2 b were 6:1 and 2:1. And II(B) series was 1:1, except that I(B)m1 j / m2 a was 3:1. Two kinds of copolyimides (Co-PIs) had better solubilities in organic solvents in polar solvents such as NMP, DMAc, DMF and DMSO, etc. Two kinds of films of copolyimide cast by thermal cyclodehydration were measured by UV-visible spectra and Macbeth Color-eye colorimeter, the cutoff wavelengths of all films were below 400 nm (357~379 nm) and the values of the parameter b* were between 7.12~14.31; these polymers were much lighter or nearer in color than other analogous polymers. II(B) series did not only show lighter colour than II(A) series, but also was still maintained better transparency at high temperature than II(A) series. In tensile properties, two series did not differ very significantly with each other, exhibited tensile strengths ranging 88~112 MPa, elongations to break from 12~28 %, and initial moduli from 1.9~2.3 GPa. In the thermal properties the Tg values of two series were in the range of 229~252 ℃ by DSC, and the 10 % weight loss temperature were recorded higher than 550 ℃ in nitrogen or in air.
PART 2
Two diimide-dicarboxylic acids, 2,2-bis[N-(4-carboxyphenyl)phthalimidyl]hexafluoropropane (p-I) and 2,2,-bis[N-(3-carboxyphenyl)phthalimidyl]hexafluoropropane (m-I), are prepared by azeotropic condensation of 4,4’-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and p-aminobenzoic acid (p-ABA) or m-ABA at a 1:2 molar ratio in DMAc/toluene. Two series of organosoluble and colorless poly(amide-imide)s (p-IIIa—j and m-IIIa—j) are synthesized from diimide-diacid p-I or m-I with ten kinds of aromatic diamines (IIa—j) by the direct polycondensation using triphenyl phosphite and pyridine as condensing agents. The thin-films cast from DMAc are measured by UV-visible spectra and Macbeth Color-eye colorimeter, the cutoff wavelengths of almost all films are below 400 nm (361—389 nm) and the values of the parameter b* are between 15.31—34.72; these polymers are much lighter in color than other analogous polymers. Almost the two series are soluble in NMP, DMAc, DMF and DMSO, and some polymers can dissolve in less polar solvents, such as dioxane and THF etc. The cast films exhibit yield strengths of 95-131MPa, tensile strengths ranging 92-130 MPa, elongations to break from 9-27%, and initial moduli from 2.1-3.3 GPa. Poly(amide-imide)s have glass-transition temperatures 259-328℃ and 10%-weight-loss temperatures above 510℃ in nitrogen and air, indicating excellent thermal stability.
PART 3
A series of organosoluble and colourless new polyamide-imide-imide (PAII) IVa~k were synthesized from fluorinated tetraimide-diacid (TIDA) I and various aromatic diamines(IIIa-k) by the direct polycondensation using triphenyl phosphite and pyridine as condensing agents. I was prepared by azeotropic condensation of 4,4’-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), p-aminobenzoic acid(p-ABA) and 4,4’-oxydianiline (4,4’-ODA) at a 2:2:1 molar ratio in NMP/toluene. The thin-films of the IV series cast from DMAc solutions of the polymers were measured by UV-visible spectra and Macbeth Color-eye colorimeter, the cutoff wavelengths of almost all films were below 400 nm (376—392 nm) and the values of the parameter b* were between 24.21~39.91; these polymers were much lighter or nearer in color than other analogous polymers which were polyamide-imide (PAI) V series containing 6FDA,TMA series of PAI and Kapton. The PAII series had good solubilities for organic solvents such as NMP, DMAc, DMF and DMSO, and some even PAII containing flexibilizing group of diamine could dissolve in less polar solvents, such as THF, etc. The cast films exhibited tensile strengths ranging 93-109 MPa, elongations to break from 8-15 %, and initial moduli from 2.0-2.8 GPa, showed excellent tensile properties. In the thermal properties the Tg values were in the range of 298~344 ℃ by DSC, and the 10 % weight loss temperature were recorded higher than 530 ℃ in nitrogen or in air.

TABLE OF CONTENTS
ABSTRACT (in English)……………………………………iv
ABSTRACT (in Chinese)……………………………………x
TABLE OF CONTENTS…………………………………………xiii
LIST OF TABLES……………………………………………xvii
LIST OF FIGURES…………………………………………xix
CHAPTER 1 INTRODUCTION…………………………………………1
CHAPTER 2 EXPERIMENTAL…………………………………………10
PART 1
2.1Materials………………………………………………………10
2.2 Polymerization………………………………………………11
2.2.1 Synthesis of PIs and soluble Co-PIs by chemical
cyclodehydration…………………………………………11
2.2.2 Synthesis of PIs and soluble Co-PIs by thermal
cyclodehydration…………………………………………11
2.3 Measurements…………………………………………………12
PART 2
2.4Materials………………………………………………………13
2.5 Synthesis of diimide-dicarboxylic acid………………14
2.6 Synthesis ofpoly(amide-imide)s…………………………17
2.7 Measurements…………………………………………………17
PART 3
2.8 Materials……………………………………………………19
2.9 Synthesis of tetraimide-diacid (I)……………………20
2.10 Synthesis poly(amide-imide-imide)s……………………22
2.11 Measurements…………………………………………………22
CHAPTER 3 RESULTS AND DISCUSSION……………………………25
PART 1
3.1 Synthesis of Copolyimides…………………………………25
3.2 Solubility……………………………………………………28
3.3 Coloration……………………………………………………31
3.4 Tensile properties…………………………………………44
3.5 Thermal properties…………………………………………47
PART 2
3.6 Monomer synthesis……………………………………………52
3.7 Polymer synthesis……………………………………………57
3.8 Solubility……………………………………………………61
3.9 Coloration……………………………………………………65
3.10 Tensile properties………………………………………72
3.11 Thermal properties………………………………………74
PART 3
3.12 Monomer syntheses…………………………………………77
3.13 Polymer syntheses…………………………………………82
3.14 Solubility…………………………………………………86
3.15 Coloration…………………………………………………88
3.16 Tensile properties………………………………………94
3.17 Thermal properties………………………………………94
CHAPTER 4 CONCLUSIONS…………………………………………100
REFERENCES…………………………………………………………103

REFERENCES
1.C. Feger, M. M. Khojasteh, and M. S. Htoo, Eds.,
Advances in Polyimide Science and Technology,
Technomic, Lancaster, 1993.
2.M. J. M. Adadie and B. Sillion, Eds., Polyimides and
other High-Temperature Polymers, Elsevier, Amsterdam,
1991.
3.K. L. Mittal, Ed., Polyimide: Synthesis,
Characterization, and Application, Vol. I&II,
Plemnum, New York, 1984.
4.C. Feger, M. M. Khojasteh, and J. E. McGrath, Eds.,
Polyimides, Chemistry and Characterization, Elsevier,
Amsterdam.
5.D. Wilson, H. D. Stenzenberger, and P. M.
Hergenrother, Eds., Polyimides, Black&Son, Glasgow,
1990.
6.P. E. Cassidy, Thermally Stable Polymers, Dekker, New
York, 1980.
7.H. H. Yang, Aromatic High-Strength Fibers, Wiley, New
York, 1989.
8.B. S. Dupont and N. Bilow, U.S. Patent,
4,592,925,1986 and A. L. Landis and A. B. Naselow,
U.S. Patent, 4,645,824, 1987.
9.For example, K. Higashi, and Y. Noda, Eur. Patent,
240249 (1986) and S. Tamai, M. Ohta, S. Kawashima, H.
Oikawa, K. Ohkoshi, and A. Yamaguchi, Eur. Patent,
234882, 1987.
10.T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto,
Electron. Lett., 29, 2107, 1993.
11.S. Ando, T. Sawada, and Y. Inoue, Electron. Lett.,
29, 2143, 1993.
12.F. E. Rogers, U.S. Patent 3,356,648, 1964.
13.R. A. Dinc-Hart, and W. W. Wright, Makromol. Chem.,
143, 189, 1971.
14.A. K. St. Clair, T. L. St. Clair and K. I. Shevket,
Polym. Mater. Sci. Eng. 51, 62, 1984.
15.A. K. St. Clair, T. L. St. Clair, W. S. Slemp, and K.
S. Ezzell., “ Proceedings of the 2nd International
Conference on Polyimides,” Ellenville, N. Y., 1985,
p333.
16.D. Wilson, H. D. Stenzenberger, and P. M.
Hergenrother, Eds., Polyimide, Black&Son, Glasgow
(1990).
17.C. P. Yang and R.S.Chen, J. Polym. Sci., Part A:
Polym. Chem., 38, 2082, 2000.
18.Y.Imai, N. N. Maider and M. Kakimoto, J. Polym. Sci.,
Polym. Chem. Ed., 22, 2189, 1984.
19.H. J. Jenog, M. Kakimoto and Y. Imai, J. Polym. Sci.,
Part A: Polym. Chem., 29, 1991, 1991.
20.F. E. Rogers, U. S. Patent 3,356,648, 1964.
21.M. K. Ghosh and K. L. Mittal, Polyimides:
fundamentals and applications. Marcel Dekker, New
York, 1996.
22.Q. Jin, T. Yamashita and K. Horie, J. Polym. Sci.,
Part A: Polym. Chem. 31, 503, 1994.
23.C. P. Yang and S. H. Hsiao, Makromol Chem, 190, 2119,
1989.
24.C. P. Yang, S. H. Hsiao and J. H. Lin, Makromol
Chem., 193, 445, 1992.
25.C. P. Yang, R. S. Chen and H. D. Chen, Polym J, 31,
1253, 1999.
26.C. P. Yang, R. S. Chen and J.A. Chen, J. Polym. Sci.
Part A Polym. Chem., 38, 1, 2000.
27.J.A. Chen and C. P. Yang, J Appl. Polym. Sci., 77,
217, 2000.
28.C. P. Yang, R. S. Chen and C. C. Chang, Colloid.
Polym. Sci., 278, 1043, 2000.
29.C. P. Yang and R. S. Chen, Polym., 40, 1025, 1999.
30.C. P. Yang, R. S. Chen and C. C. Huang, J. Polym.
Sci. Part A Polym. Chem., 37, 2421, 1999.
31.M. Bruma, B. Schulz and F. W. Mercer, Ploym., 35,
4209, 1994.
32.M. Bruma, F. Mercer, J. Fitch, and P. Cassidy, J.
Appl. Polym. Sci. 56, 527, 1995.
33.D. J. Irvin, P. E. Cassidy, M. L. Cameron, Int. SAMPE
Electron. Conf. 1990, 4 (Electron. Mater-our Future),
223, 1990.
34.D. J. Irvin, P. E. Cassidy, D. L. Meurer, J. W. Fitch
III and D. A. Taylor, Ploym., 37, 2227, 1996.
35.C. Hamciuc, M. Bruma, F. W. Mercer, T. Kopnick, and
B. Schulz, Macromol. Mater. Eng. 276/277, 38, 2000.
36.D. J. Liaw, B. Y. Liaw and J. M. Tseng, J. Polym.
Sci., Part A: Polym. Chem. 37, 2629, 1999.
37.M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai, J.
Polym. Sci. Polym. Chem. Ed., 26, 99, 1988.
38.C. P. Yang and W. T. Chen, J. Polym. Sci., Part A:
Polym. Chem., 32, 435, 1994.
39.C. P. Yang and W. T. Chen, J. Polym. Sci., Part A:
Polym. Chem., 32, 1101, 1994.
40.C. P. Yang and J. H. Lin, J. Polym. Sci., Part A:
Polym. Chem., 32, 2653, 1994.
41.C. P. Yang, S. H. Hsiao and J. H. Lin, Makromol
Chem., 193, 1299, 1992.
42.C. P. Yang, R.S.Chen and M. F. Hsu, Colloid. Polym.
Sci., accepted.
43.S. H. Hsiao,C. P. Yang and S. H. Chen, J. Polym. Sci.
Part A Polym. Chem., 38, 1551, 2000.
44.C. P. Yang and J. J. Cherng, J. Polym. Sci. Part A:
Polym. Chem.,33, 2209, 1995.
45.S. Ando, T. Matsuura and S. Sasaki, Polym. J., 29,
69, 1997.
46. S. Tamai, W. Yamashita and A. Yamaguchi, , J. Polym.
Sci., Part A: Polym. Chem., 36, 1717, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 銀填充多層奈米碳管/聚(醯胺-亞醯胺)奈米複合膜材之製備與特性分析
2. 藉由連續自我反覆反應製備高溫熱穩定性光學高分子及其特性分析
3. 聚亞醯胺/氧化石墨烯與 聚(醯胺-亞醯胺)/氧化石墨烯複合薄膜之阻水及防腐蝕性質研究
4. 新穎性聚醯亞胺及其有機/無機混成材料之設計、合成、性質及其於光學應用
5. 由2,3-雙(3,4-二羧基苯氧)萘二酐、1,4-雙(4-胺基-2-三氟甲基苯氧)-2,5-雙特丁基苯及1,4,5,8-萘二酐衍生之聚醚醯亞胺、醯胺醯亞胺及萘醯亞胺等聚合物及其性質研究
6. 可應用於低軌太空材料之聚醯亞胺/聚醯胺/聚醯胺醯亞胺之合成與性質探討
7. 色淡及低介電常數聚醯亞胺與聚醯胺醯亞胺之合成與物性研究
8. 有機可溶性聚醯亞胺及色淡聚醯胺醯亞胺之合成與性質
9. 由4,4'-二羥二苯基碸與2,3-二羥萘經由二醚二胺合成含氟聚醯亞胺及其性質
10. 由四醯亞胺二羧酸與各種芳香族二胺製備可溶性聚醯胺醯亞胺及其性質之探討
11. 新型高性能高分子聚醯胺、聚醯亞胺與聚醯胺醯亞胺之合成與物性研究
12. 主鏈含醚基及環己烷CARDO基之可溶性芳香族聚醯亞胺及聚醯胺醯亞胺之合成與性質
13. 主鏈含醚基及環己烷CARDO基之可溶性芳香族聚醯亞胺及聚醯胺醯亞胺之合成與性質
14. 色淡聚醯胺醯亞胺之合成與性質
15. 主鏈含螺雙克之高性能高分子之合成與性質
 
無相關期刊