(3.231.29.122) 您好!臺灣時間:2021/02/25 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝佩華
研究生(外文):Hsieh Pei-Hua
論文名稱:利用PseudomonasfluorescenceTIT16進行有機廢水脫氮之研究
論文名稱(外文):Studies on Denitrification of Organic Wastewater by Pseudomonas fluorescence TIT16
指導教授:許垤棋
指導教授(外文):Sheu Dey-Chyi
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:58
中文關鍵詞:假單胞菌脫氮作用批次反應膜反應器流體化床廢水處理
外文關鍵詞:Pseudomonas fluorescencedenitrificationbatch reactionMBR systemfluidized bedwastewater treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
利用假單胞菌Pseudomonas fluorescence TIT16進行有機廢水生物處理過程中的脫氮作用之研究。在脫氮過程中,添加異丙醇當作電子供給體(electron donor)以及微生物所需之碳源(carbon source)。在這個研究中,利用攪拌式批次反應槽、膜反應器系統(MBR system)以及塑膠擔體流體化床等三種模式,進行最適脫氮條件之探討。由攪拌式批次反應槽之實驗中,最適脫氮酸鹼度為pH 7.5,反應進行12小時,硝酸氮從140 ppm降至10 ppm以下,整個反應過程偵測不到亞硝酸氮,而且在此酸鹼度下也能維持菌體的生存。在pH 6.5偏酸的情況下,硝酸氮的變化很慢,在反應8小時後硝酸鹽氮才開始降低,反應至12小時硝酸氮仍有50 ppm,而且菌體濃度有衰退的現像。在pH 8.5偏鹼的情況下,反應24小時,硝酸氮幾乎沒有改變,細菌也無法在此酸鹼度下繼續存活。用膜反應器系統,其中細菌的添加劑量是每升0.54克的細胞乾重,廢水的硝酸氮是80 ppm,每天之最大處理量為反應槽的8倍體積,在此處理條件下,流出液之硝酸鹽氮維持在10 ppm左右,而且細菌可繼續存活。若將每天處理量提高至10倍體積,流出液之硝酸氮提高至40 ppm左右,而且細菌無法繼續存活,菌體濃度(OD600)由1.4降至0.2。若將廢水硝酸氮降至60 ppm,每天處理量維持10倍體積,則流出液之硝酸氮降至10 ppm左右,且菌體濃度(OD600)也可以維持在1.8左右。用塑膠擔體流體化床進行脫氮時,每天處理量為2倍體積,硝酸氮最高至100 ppm左右幾乎可完全去除。
關鍵詞:假單胞菌、脫氮作用、批次反應、膜反應器、流體化床、廢水處理。

Abstract
In the process of organic wastewater treatment, the denitrification using cells of Pseudomonas fluorescence
TIT16 was investigated. Isopropanol served as electron donor and carbon source for denitrification. Three kinds of models, including a stirred tank batch reactor, a MBR system and an up-flow fluidized bed reactor, were provided for the studies of the optimum denitrification. For stirred tank batch reaction, the optimum pH was 7.5. After a 12-hour denitrification at pH 7.5, nitrate-N dropped from 140 to 10 ppm. Whereas nitrite was not detected and bacteria sustained life throughout the denitrification process. At pH 6.5, under a slightly acidic condition, the decrease of nitrate-N occurred slowly. The decrease of nitrate-N began at hour 8 and 50 ppm nitrate-N was left behind at hour 12. Meanwhile, the bacteria cells have decayed. At pH 8.5, under a slightly alkaline condition, nitrate-N held still and the bacteria died after a 24-hour denitrification was carried out. By MBR system at a bacteria dose of 0.54 g l-1 cell dry weight, the maximum dilution rate was 8 d-1 for the feeding of wastewater containing 80 ppm nitrate-N. The nitrate-N of the effluent was as low as 10 ppm and the bacteria cells kept alive. With the feeding of wastewater containing 80 ppm nitrate-N, when the dilution rate was shifted to 10 d-1, 40 ppm nitrate-N in the effluent was detected and the bacteria was dying according to the decrease of OD600 value from1.4 to 0.2. In the case of wastewater containing 60 ppm nitrate-N and at a dilution rate of 10 d-1, the effluent contained a nitrate-N below 10 ppm and the OD600 value held at 1.8. By the up-flow fluidized bed reactor, the denitrification of wastewater containing 100 ppm nitrate-N, was successfully performed at a dilution rate of 2 d-1 with a trace of nitrate present in the effluent. Among these three ways of denitrification using cells of Pseudomonas fluorescence TIT16, the MBR system gave the most efficiency for the removal of nitrate-N in wastewater.
Keywords: Pseudomonas fluorescence, denitrification, batch reaction, MBR system, fluidized bed, wastewater treatment

ABSTRACT I
CHINESE ABSTRACT III
CONTENTS IV
LIST OF FIGURES VIII
LIST OF TABLES X
CHAPTER 1. Introduction 1
CHAPTER 2. Literature review 2
2.1 Nitrogen cycle in the nature 2
2.2 The nitrogen compounds influence the environment 3
2.3 Respiration of nitrate 4
2.4 What is the denitrification 7
2.5 The denitrifying prokaryotes 8
2.6 Electron transport systems 9
2.7 Control of denitrification 12
2.7.1 Effect of oxygen on enzyme activities in whole
cell 12
2.7.2 Effect of oxygen on gene expression 13
2.7.3 pH 13
2.7.4 Temperature 14
2.7.5 Organic carbon 14
2.7.6 Nitrogen oxides 16
2.7.7 Inhibitors 17
CHAPTER 3. MATERIALS AND METHODS 18
3.1 Materials 18
3.2 Microorganisms 18
3.3 Culture media 19
3.4 Determination of nitrate, nitrite and ammonia 20
3.5 Procedures for screening of denitrifying bacteria 21
3.6 Influence of oxygen on the denitrifying bacteria 21
3.6.1 Procedures for the influence of oxygen on
denitrifying bacteria 21
3.7 Denitrification using a stirred tank bioractor 22
3.7.1 The optimum pH of denitrification using a stirred tank bioreactor 22
3.7.2 Procedures for the optimum pH using a stirred tank bioreactor 22
3.8 Denitrification using a fluidized bed reactor 23
3.9 Denitrification using a MBR system 25
3.9.1 The maximum dilution rate of denitrification using the MBR system 27
3.9.2 Procedures for the maximum dilution rate of denitrification using the MBR system 27
CHAPTER 4. RESULTS AND DISSCUSION 28
4.1 Screening of the denitrifying bacteria 28
4.2 Influence of oxygen on the denitrifying bacteria 31
4.3 The optimum pH of denitrification using a stirred tank bioreactor 33
4.4 The maximum concentration of nitrate for denitrification by the up-flow fluidized bed reaction 40
4.5 The maximum dilution rate of denitrification by the MBR system 42
4.6 Comparison in rates of denitrification via three kinds of processes 49
CHAPTER 5. Conclusion 50
REFERENCE 52

Reference
1.Bailey, L. D. 1976. Effects of temperature and root on denitrificaton in a soil. Can. J. Soil Sci. 56:79-87.
2.Bailey, L. D., and E. G. Beauchamp.1973. Effect of temperature on NO3- and NO2- reduction, nitrogenous gas production, and redox potential in a saturated soil. Can. J. Soil Sci. 53:213-218.
3.Bell, L. C., Rochardson, D. J. and Ferguson, S. J. 1990. Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha : the periplasmic enzyme cataluzes the first step in aerobic denitrification. FEBS Lett 265,85-87.
4.Betlach, M. R. and J. M. Tiedue. 1981. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial dnitrificaion. App. Environ. Microbiol. 42:1074-1084.
5.Blackmer, A. M. and J. M Bremner. 1978. Inhibitory effect of nitrate on reduction of N2Oto N2 by soil microorganisms. Soil Biol. Bichem. 10:187-191.
6.Bremner, J. M., and K. Shaw. 1958. Denitrification in soil. II factors affecting denitrifacion . J. Agric. Sci. 51:40-52.
7.Burford, J. R., and J. M. Bremner. 1975. Relationships between denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biol Bichem. 7:385-394.
8.Castignetti, D., and T. C, Hollocher, 1981. Denitrification by a nitrifying Alcaligenes species. Fed. Proc. 40: 1688.
9.Calder, K., K. A. Burke, and J. Lascelles. 1980. Induction of nitrate reductase and membrane cytochromes in wild type and chlorate-resistant Paracoccus denitrificans. Arch. Microbiol. 126:149-153.
10.Cofer, W. R., III, J. S. Lecine, E. L. Winstead, and B.J. Stocks. 1991. New estimates of nitrous oxide emissions from biomass burning. Nature 349:689-691
11.Conrad, R. 1996. Soil microorganisms as controllers of atmospheric trace gases(H2, CO, CH4, OCS, N2O and NO). Microbiol. Rev. 60:609-640
12.Cooper, G. S., and R. L. Smith. 1963. Sequence of products formed during denitrification in some diverse western soils. Soil. Sci. Soc. Am. Proc. 27:659-662.
13.Crutzen, P. L. 1981 Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide, p. 14-44 In C.C. Delwiche (ed.), Deenitrification, nitrification, and atmospheric nitrous oxide. John Wiley & Sons, Inc., New York, N.Y.
14.Dickinson, R. E., and R. J. Cicerone. 1986. Future glonal warming from atmospheric trace gases. Nature 319: 109-115
15.Downey, R. J., and J. H. Nuner. 1967. Induction of nitrate reductase under conditions of nitrogen depletion. Life Sci. 6:855-861.
16.Focht, D. D. 1974. The effect of temperature, pH, and aeration of the production of nitrous oxide and gasous nitrogen-a zero-order kinetic model. Soil Sci. 118:173-179.
17.Gamble, T. N., M.R. Betlach, and J. M. Tiedue. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33:926-939.
18.Gent-Ruyters, M. L. van, W. deVrles, amd A. H. Stouthamer. 1975. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum. J. Gen.Microbiol. 88:36-48.
19.Greenberg. E. P., and G. E. Becker. 1977. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads. Can. J. Microbiol. 23:903-907.
20.Heitzer, R. D., and J. C. G. Ottow. 1976. New denitrifying bacteria isolated from Red Sea sediments. Mae. Bio. 37:1-10.
21.Hermandez D & Rowe JJ. 1988. Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J. Biol. Chem. 263: 7937-7939.
22.John P. 1977.Aerobic and anaerobic bacterial respiration monitored by electrodes. J. Gen. Microbiol. 98: 231-238.
23.John, P., and F. R. Whatley. 1975. Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature. 254:495-498.
24.Keeney, D. R., R.Fillery, and G. P. Marx. 1979. Effect of temperature on the gaseous nitrogen products of denitrification in a sily loam soil. Soil Sci. Soc. Am. J. 43: 1124-1128.
25.Kim, K. R., and H. Craig. 1993. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: a global perspective. Science 262: 1855-1857
26.Korner H & Zumft WG. 1989. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol. 55: 1670-1676.
27.Letey, J., N. Valoras, A. Hadas, and D. D. Focht. 1980. Effect of air-filled porosity, nitrate concentration and time on the ratio of N2O/N2 evolution during denitrification. J. Environ. Qual. 9:227-231.
28.Matsubara, T. 1971. Sstudies on denitrification. XIII. Some properties of the N2O-anaerobically grown cell. J. Biochem.69:991-1001.
29.Muller, M. M., V. Sundman, and J. Skujins. 1980. Denitrification in low pH spodosols and peats determined with acetylene inhibition method. Appl. Environ. Microbiol. 40:235-239.
30.Noji S & Tanifuchi S. 1987. Molecular oxygen controls nitrate transport of Escherichia coli nitrate-respiring cell. J. Biol. Chem. 262: 9441-9443.
31.Nommik, H. 1956. Investigations on denitrification in soil. Acta Agric. Scand. 6:195-228.
32.Otte, S., N. G. Grobben, L. A. Robertson, M. S. M. Jetten, and J.G. Kuene. 1996. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aeronic and anaeronic conditions. Appl. Environ. Microbiol. 62:2421-2426.
33.Payne, W. J., and P. S. Riley. 1969. Suppression by nitrate of enzymatic reduction of nitric oxide. Proc. Soc. Exp. Biol. Med. 132:258-260.
34.Payne, W. J., P. S. Riley, and C.D. Cox. 1971. Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Psudomonas perfectmarinus. J. Bacteriol. 106:356-361.
35.Payne, W. J., and W. L. Balderston. 1978. Denitrification, p.339-45. In D. Schlessinger(ed.). Mocrobiology-1978. American Society for Microbiology, Washingtom, D.C.
36.Pichinoty, F., M. Veron, M. Mandel, M. Durand, C. Job, and J.-L. Garcia. 1978. Etude physiologique et tzxonomique du genre Alcaligenes: A. denitrificans, A. odorans et A. faecalis. Can. J. Microbiol. 24: 743-753.
37.Satoh, T., Y. Hoshina, and H. Kitamura. 1974. Isolation of denitrifying photosynthetic bacteria. Agric. Biol. Chem. 38: 1749-1751.
38.Satoh, T., Y. Hoshina, and H. Kitamura. 1976. Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch. Microbiol. 108: 265-269.
39.Sawada, E., T. Satoh, and H. Kitamura. 1978. Purfication and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium. Plant Cell Physiol. 19: 1339-1351.
40.Sears, H. J., Little, P., Rochardson, D. J., Berks, B. C., Spiro, S. & Fergusoon, S. J.(1997). Identification of an assililatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient on nitrate respiration. Arch Microniol 167, 61-66.
41.Serensen, J. 1978. Occurrence of nitric and nitrous oxides in a coastal marine sediment. Appl. Environ. Microbiol. 36: 809-813.
42.Sias, S. R., and J. L. Ingraham. 1979. Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate, Arch. Microbiol. 122:26-270.
43.Smid, A. E., and E. G. Beeauchamp.1976. Effect of temperature and organic matter on denitrification in soil. Can. J. soil Sci. 56:385-391.
44.Snyder, S. W., and Hollocher, T. C. 1987. Purification and characteristics of nitrous oxide reductase from Paracoccus denitrificans. J. Biol. Chm. 262:6515-6525.
45.Stuart, J. F. 1994. Denitrification and its control. Antonie van Leeuwenhoek. 66:89-110.
46.Thiemens, M. L., and W. C. Trogler. 1991. Nylon production: and unknown source of atmospheric nitrous oxide. Science 251:932-934
47.Timkovich, R., Dhesi, R., Marinkis, K. J., Robinson, M. K., and Rea, T. M. 1982. Isolation of Paracoccus denitrificans cytochrome cd 1 : comparative kinetics with other nitrite reductase. Arch. Biochem. Biophys. 215:47-58.
48.Van Cleemput, O., and W. H. Patrick. 1974. Nitrate and nitrite reduction on flooded gamma-irradiated soil under controlled pH and redox potential conditions. Soil Biol.Biochem. 6:85-88.
49.Vanderborghy, J. P., R. Wollast, and G. Billen. 1977. Kinetic models of diagenesis in disturbed sediments. 2. Nitrogen diagenesis. Limnol. Ocenogr. 22:794-803.
50.Warnecke-Eberz, U., and Friedrich, B. (1993). Three nitrate reductase activities in Alcaligens eutrophus. Arch Microbiol, 159, 405-409.
51.Wijler, J., and C. C. Delwiche. 1954. Investigations on the
denitrifying process in soil. Plant soil 5:155-169.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔