跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許晉嘉
研究生(外文):Chin-Chia Hsu
論文名稱:矽離子佈植玻璃材料與元件之光電特性分析
論文名稱(外文):The Optoelectronic Properties Of Borosilicate Glass Materials And Device
指導教授:林恭如
指導教授(外文):Gong-Ru Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:65
中文關鍵詞:矽離子佈植二氧化矽傳輸線模型蕭特基接觸奈米矽晶
外文關鍵詞:SiO2:Si+MSMMetal-Semiconductor-MetalSchottky DiodeTLMnanocrystalSi implantedSi+
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要探討以不同劑量矽離子佈植Borosilicon glass材料經過爐管退火製程500 ℃,0~120分鐘之後,所形成的半導體特性。
文章中介紹一種能隙能量為2.5 eV的新穎Si nanocrystal半導體材質,分析矽離子佈植Borosilicate glass (SiO2:Si+)材質的結構、光學以及電性的特性。經由X-ray繞射分析,我們可以得到在近似非晶系的as-implanted SiO2:Si+ 試片經退火後,在X-ray的振動曲線中在2q = 29°、2q = 14°出現了變化,我們將前者歸為(1 1 1)矽的晶格方向,後者為(0 2 1)的二氧化矽晶格方向。在Photoluminescence (PL) 的量測方面,試片在激發光源為270 nm時可得到約在520 nm 處的峰值曲線。在電性量測方面,利用TLM的製程所形成的鋁/SiO2:Si+蕭特基二極體與電流-電壓的分析,SiO2:Si+ 材質的暗電流、breakdown voltage、接觸電阻、片電阻、特性接觸電阻值都被加以量測與討論。
我們在as-implanted SiO2:Si+ 的材質中在電場增加至2.9x105 volts/c時觀察到transferred electron effect 與negative resistance effect,這是材質中具有Si nanocrysatls直接能隙半導體結構的重要佐證。且利用光電流的結果說明了利用矽離子佈植Borosilicate glass的方式,可使其絕緣性的材質轉變為具有半導體的特性。利用較短波長的激發雷射可改善SiO2:Si+ diode光電流響應的情形,其歸因於材質在此波長時具較大的吸收係數。在未來相信可將此新穎Si nanocrystal半導體材質應用在藍光光感應器以及在高電壓操作下的光導開關元件研發上。此外,我們製作交趾狀電極的MSM-PD並以取樣式波器嘗試量測光脈衝時域響應的訊號。

This thesis investigated the furnace-annealing process at 500℃ for ranging from 30 to 120 min at 30 min increments was employed to modify the semi-conducting property of the silicon-implanted Borosilicate glass samples.
In our experiment, the structural aspects, electrical and optical properties of Silicon-implanted Borosilicate glass (SiO2:Si+) — a novel nanocrystallite semiconductor with bandgap energy of 2.5 eV are studied. A nearly amorphous structure of as-implanted SiO2:Si+ surface associated with two relatively small peak positioned at 2q=29°, and 2q=14°that corresponds to the (111)-oriented Si crystallite and the (021)-oriented SiO2 host was observed. A sharp photoluminescence peak at wavelength of 520 nm in contrast to the broadened lumincant spectra of glass substrate in measured with excitation wavelength of 270 nm. The electrical properties dark current, photocurrent, breakdown voltage as well as other structural characteristics of the SiO2:Si+ shottky diode was fabricated by the metal evaporation (of Aluminum) with different contact spacings have been measured and discussed in this work by using the transmission line measurement (TLM) and current-voltage (I-V) analysis.
The transferred electron effect and the phenomenon of negative photoconductivity were also been observed as electric field increases to 2.9x105 volts/cm. It is important to evidence that the material possesses silicon nanocrystallites semiconductor with direct-bandgap. Our results of the transferred electron effect and the photocurrent qualitatively corroborate the possibility of changing the insulating Borosilicate glass into a semiconductor by using silicon-implanting process. The enhanced photocurrent response of the SiO2:Si+ diode under illumination at smaller wavelength indicates an increasing trend of absorption coefficient on photon energy. The explanation of the improved photocurrent response at shorter photon wavelength is primarily attributed to the larger absorption coefficient as well as thinner penetration depth of light at such wavelength. The study in fabrication of blue-photosensitive and optically high-voltage switches by using the novel Si nano-crystallite semi-conducting glass is thus straightforward. In addition, the photocurrent analysis of a metal-semiconductor-metal photodectors (MSM-PD) with U-shaped interdigitated electrodes that fabricated on silicon-ion-implanted Borosilicate glass (SiO2:Si+) or SiO2/Si substrate are primarily reported. The impulse response of the SiO2:Si+ MSM-PD (spacing = 20 μm) has been measured by a sampling oscilloscope.

CONTENTS
page
ABSTRACT (Chinese) i
ABSTRACT (English) ii
ACKNOWLEDGEMENT iii
CONTENTS iv
LIST OF FIGURE vii
Chapter 1 : Introduction
1.1 Historical for silicon-implanted Borosilicate glass (SiO2:Si+) 1
1.1.1 The structural and electrical characteristics of silicon-implanted Borosilicate glass1
1.1.2 Optoelectronic characteristics of shottky diode on silicon-implanted Borosilicate glass substrate1
1.1.3 Optoelectronic property of metal-semiconductor-metal photodetector fabricated on silicon-implanted SiO2 2
1.2 Motivation for silicon-implanted Borosilicate Glass (SiO2:Si+)3
References 4
Chapter 2 : Basic thesis of measured methods and device fabrication
2.1 Basic thesis of measured methods 7
2.1.1 Introduction7
2.1.2 Standard technique of one-layer TLM7
2.1.3 Current-voltage analysis9
2.1.4 Standard technique of MSM10
2.2 Device fabrication10
2.2.1 TLM fabricating processes11
2.2.1.1 Initial Clean11
2.2.1.2 Photolithography12
2.2.1.3 Metallization12
2.2.1.4 Lift-off13
2.2.1.5 measurement13
2.2.2 MSM fabricating processes13
2.2.2.1 Initial Clean14
2.2.2.2 Photolithography14
2.2.2.3 Metallization15
2.2.2.4 Lift-off15
2.2.2.5 measurement15
2.3 The structural aspects and optical properties16
2.3.1 Photoluminescence (PL)16
2.3.2 X-ray diffraction (XRD)16
References16
Figures17
Chapter 3 : The Structural and Electrical Characteristics of Silicon-Implanted Borosilicate Glass
3.1 Introduction26
3.2 Results and Discussions26
3.2.1 Measurement of X-Ray diffractometry26
3.2.2 Measurement of photoluminescence (PL)27
3.2.3 Dark Current and Resistance of TLM28
3.2.3.1 The dark current before annealing28
3.2.3.2 The dark current after annealing28
3.2.3.3 The breakdown voltage of SiO2:Si+ diode29
3.2.3.4 The properties of resistance for SiO2:Si+30
3.3 Conclusion30
References31
Figures33
Chapter 4 : Optoelectronic Characteristics of Shottky Diode on Silicon-Implanted Borosilicate Glass Substrate
4.1 Introduction42
4.2 Theoretical and Calculation42
4.2.1 High field transport for direct-bandgap semiconductor42
4.2.2 The effective mobility and the saturation current of measured methods43
4.3 Results and Discussions43
4.3.1 Transferred electron effect and negative resistance effect43
4.3.2 The mobility and the saturation current of the as-implanted SiO2:Si+44
4.3.3 The photocurrent of TLM45
4.4 Conclusion46
Figures47
Chapter 5 : Optoelectronic Property of Metal-Semiconductor-Metal Photodetector Fabricated on Silicon-implanted SiO2 Substrate
5.1 Introduction52
5.2 Results and Discussions52
5.2.1 MSM current52
5.2.2 BOE etching SiO2:Si+ substrate53
5.2.3 The impulse response of the metal-semiconductor-metal photodiode54
5.3 Conclusion55
Figures 56

[1] A.G. Cullis, L.T. Canham, P.D. Calcott, J. Appl. Phys. 82, 909 (1997).
[2] V. Lehmann, U. Gosele, Appl. Phys. Lett. 58, 856 (1991).
[3] D.J. DiMaria, J.R. Kirtley, E.J. Pakulis, D.W. Dong, T.S. Kuan, F.L. Pesavento, T.N. Theis, J.A. Cutro, J. Appl. Phys. 56, 401 (1984).
[4] S. Furukawa, T. Miyasato, “Three-Dimensional Quantum Well Effects in Ultrafine Silicon Particles”, Jpn. J. Appl. Phys. Part 2, vol. 27, no. 11, pp. 2207-2209, November 1988.
[5] H. Takagi, H. Ogawa, Y. Yamazaki, T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).
[6] H. Morisaki, F. W. Ping, H. Ono, K. Yazawa, J. Appl. Phys. 70, 1869 (1991).
[7] S. Hayashi, T. Nagareda, Y. Kanzawa, K. Yamamoto, “Photoluminescence of Si-Rich SiO2 Films: Si Clusters as Luminescent Center”, Jpn. J. Appl. Phys. Part 1, vol. 32, no. 9A, pp. 3840-3845, September 1993.
[8] L. Rebohle, J. von Borany, R. A. Yankov, and W. Skorupa, I. E. Tyschenko, H. Frob, and K. Leo, “Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-diode layers”, Appl. Phys. Lett., vol. 71, no. 19, pp. 2809-2811, November 1997.
[1] D.C. Look, D.C. Walters, G.D. Robinson, J.R. Sizelove, M.G. Mier and C.E. Stutz, J. Appl. Phys. 73(1993) 306.
[2] Dieter K. Schroder, Semiconductor material and device characterization 2nd edition, pp. 170.
[3] L. Rebohle, J. von Borany, R. A. Yankov, and W. Skorupa, I. E. Tyschenko, H. Frob, and K. Leo, “Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-diode layers”, Appl. Phys. Lett., vol. 71, no. 19, pp. 2809-2811, November 1997.
[1] D. Zhang, R. M. Kolbas, P. D. Mileswski, D. J. Lichtenwalner, A. I. Kingon, and J. M. Zavada, Appl. Phys. Lett., vol. 65, pp.2684-2686, 1994.
[2] A.G. Cullis, L.T. Canham, and P.D. Calcott, J. Appl. Phys. 82, 909 (1997).
[3] V. Lehmann and U. Gosele, Appl. Phys. Lett. 58, 856 (1991).
[4] D.J. DiMaria, J.R. Kirtley, E.J. Pakulis, D.W. Dong, T.S. Kuan, F.L. Pesavento, T.N. Theis, and J.A. Cutro, J. Appl. Phys. 56, 401 (1984).
[5] S. Furukawa, T. Miyasato, “Three-Dimensional Quantum Well Effects in Ultrafine Silicon Particles”, Jpn. J. Appl. Phys. Part 2, vol. 27, no. 11, pp. 2207-2209, November 1988.
[6] H. Takagi, H. Ogawa, Y. Yamazaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).
[7] H. Morisaki, F. W. Ping, H. Ono, and K. Yazawa, J. Appl. Phys. 70, 1869 (1991).
[8] S. Hayashi, T. Nagareda, Y. Kanzawa, K. Yamamoto, “Photoluminescence of Si-Rich SiO2 Films: Si Clusters as Luminescent Center”, Jpn. J. Appl. Phys. Part 1, vol. 32, no. 9A, pp. 3840-3845, September 1993.
[9] L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
[10] S. Coffa, A. Polman, and O. Soref (Eds.), Materials and devices for silicon-based optoelectronics, Mat. Res. Soc. Symp. Proc. Vol.486, Materials Research Society, (1998).
[11] C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 48, 11024 (1993).
[12] K. S. Min, K. V. Shchegloe, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, Appl. Phys. Lett., 69, 2033 (1996).
[13] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).
[14] K. D. Hirschman, L. Tsybeskov, S. D. Duttagupta, and P. M. Fauchet, Nature (London) 384, 338 (1996).
[15] Y. Kanemitsu, Phys.Rep. 263, 1 (1995).
[16] M. L. Brongersma, K. S. Min, E. Boer, T. Tambo, A. Polman, and H. A. Atwater, Mater. Res. Soc. Symp. Proc. 486, (1998).
[17]M. Y. Hao, H. Hwang, and J. C. Lee, “Memory effect of silicon-implanted oxides for electrically erasable programmable read-only memory applications”, Appl. Phys. Lett. vol 62, no. 13, pp. 1530-1532, March 1993.
[18]S. H. Choi, and R. G. Elliman, “Negative photoconductivity in SiO2 films containing Si nanocrystals”, Appl. Phys. Lett., vol. 74, no. 26, pp.3987-3989, June 1999.
[19] L. Rebohle, J. von Borany, R. A. Yankov, and W. Skorupa, I. E. Tyschenko, H. Frob, and K. Leo, “Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-diode layers”, Appl. Phys. Lett., vol. 71, no. 19, pp. 2809-2811, November 1997.
[20] A. Sandhu, Y. Show, T. Katano, M. Iwase, T. Izumi, T. Yabe, S. Nozaki, and H. Morisaki, Appl. Sur. Sci., 117, 634 (1997).
[21] See for example, JCPDS-International Center for Diffraction Data, No. 35-63, 82, (1999) Newtown Square, Pennsy Ivania 19073-3273 USA.
[22] H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, J. Appl. Phys., 82, 4028 (1997).
[23] L. S. Liao, X. M. Bao, N. S. Li, X. Q. Zheng, and N. B. Min, Journal of Luminescence, 68, 199 (1996).
[24] P. Mutti, G. Ghislotti, L.Meda, E. Grilli, M. Guzzi, L. Zanghieri, R. Cubeddu, A. Pifferi, P. Taroni, and A. Torricelli, Thin Solid Films, 276, 88 (1996).
[26] S. T. Chou, J. H. Tsai, and B. C. Sheu, J. Appl. Phys., 83, 5394 (1998).
[1] Mark J. W. Rodwell, “ Picosecond electrical wavefront generation and picosecond optoelectronic instrumentation”, 1987
[2] Gong-Ru Li, Wen-Chung Chen, C. S. Chang, and Ci-Ling Pan, “Electrical characterization of arsenic-ion-implanted semi-insulating GaAs by current-voltage measurement”, Appl. Phys. Letters. Vol. 65, p.3272-3274, 1994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top