(54.236.62.49) 您好!臺灣時間:2021/03/08 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李明旭
研究生(外文):Ming-Shu Li
論文名稱:電漿沉積膜於阻抗式多元微感測器之應用研究
論文名稱(外文):The Study and Application of PECVD Films on Impedance-Type Integrated Multifunctional Sensors
指導教授:陳克紹陳克紹引用關係
指導教授(外文):Ko-Shao Chen
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:67
中文關鍵詞:積體化多元微小型感測元件PECVDUV光引發接枝聚合SnOx有機薄膜
外文關鍵詞:Integrated multifunctional devicesPECVDUV-induced grafting polymerizationSnOx organic-like films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
於矽晶片(Si-wafer)上,可利用半導體技術,藉由感測電極圖形(Patterns)的設計,製作阻抗式積體化之多元微小型的感測元件(Impedance-Type Integrated Multifunctional Sensors)。感測元件上以四甲基錫(Tetramethyltin, TMT, Sn(CH3)4)為反應單體混合氧氣(O2 gas),利用低溫電漿化學氣相沉積PECVD(Plasma Enhanced Chemical Vapor Deposition)法沉積含SnOx有機薄膜,作為感測基層或溫度感測之用,再藉部分遮蔽或微影(Photolithography)之方式,在同一元件上的不同區域,以UV光引發接枝聚合(UV-induced grafting polymerization)具有不同官能基的高分子於其上,作為不同特性之感測層,並藉由單一感測器的功能測試和分析,了解感測性質、溫度、濕度、單體濃度與各個感測器之間的關係,檢討最理想的感測膜製作條件與參數,再製作此多元微小型感測元件。
經過接枝AAm的部分,水接觸角下降形成親水性膜,阻抗值
的變化明顯改善,這將使其感測濕度的效果增強。
PECVD沉積膜隨所通入之四甲基錫相對於氧含量比例的不同,對所得膜的組成及特性產生不同之影響。TMT單體壓力比值高之情況,膜之組成趨向含有較多有機成分,表面會從親水性變成疏水性;換言之,O2單體壓力比值較高時(TMT混合比例較低),有機成分減少,較接近無機SnOx的組成。以TMT:O2=20:20 mtorr沉積之膜,所含Sn原子比例較高,C/Sn比及O/Sn比之值均較低,呈現較親水性、低阻抗特性及良好的溫度感測性質。從Micro FT/IR之分析得知,其膜的結構中主要具有CH3, CH2, CH, and Sn-O, Sn-O-Sn基。
而在電漿參數為50W、10min.及TMT:O2=20:20 mtorr條件下製成的膜,溫度感測性最佳,同條件接枝AAm之濕度感應性最好,故可製作數個不同功能的感測器,使其積集化在單一之多元微小型的感測元件上。

To fabricate the impedance-type integrated multifunctional sensitive devices on the Si wafer with Al electrodes, semiconductor manufacture technology was employed. Tin oxide (SnOx) organic-like thin films, as the intermediate layer or temperature sensor, were deposited on the devices by plasma enhanced chemical vapor deposition (PECVD) of tetramethyltin (TMT) and O2 mixing gas at low temperature. To prepare another parts of sensitive units, these units of the device were introduced various kinds of functional-group polymers by UV-induced grafting polymerization through partial shield or photolithography.
The characteristics of individual films or functional-group polymer lays, such as the relationships among the sensing properties, temperature, humidity, gas, and monomer concentrations, etc., were accessed before preparing multifunctional sensitive devices in this study.
The acrylamide (AAm) grafting will get a hydrophilic surface and the impedance of the device decreases when related humidity (R.H.) increases monotonically. The more amount of TMT in mixing monomers during plasma deposition will tend to increase organic components in the deposited film and the surface exhibits hydrophobic. On the other hand, the less ratio of TMT gets a film with less organic nature. Therefore the film, prepared from TMT:O2=20:20 mtorr, contains higher Sn and relatively fewer C and O, resulting in more hydrophilic, low impedance, and good temperature sensing properties. From Micro FT/IR analysis, the results showed that the films consist mainly of CH3, CH2, CH, and Sn-O, Sn-O-Sn groups.
The optimal parameters for fabricating the temperature-sensitive layer is 50W, 10min., and TMT:O2=20:20 mtorr. This optimal condition is also appropriate for the subsequent AAm grafting for humidity sensors. Therefore multi-sensors on the integrated multifunctional device using semiconductor processes on Si-wafer is feasible from this study.

Contents
Acknowledgment
Abstracti
Chinese abstractiii
Contentsv
List of Tableviii
List of Figuresix
Chapter 1 Introduction1
Chapter 2 Literature Review3
2-1 Plasma3
2-2 Plasma depositions4
2-3 Photo-initiated graft copolymerization5
2-4 Sensitive properties of tin oxide films6
2-4.1 Temperature sensitivity6
2-4.2 Humidity sensitivity8
2-4.3 Gases sensitivity9
2-4.4 Tin Dioxide Characteristics10
Chapter 3 Experiment12
3-1 Flow chart of experiment12
3-2 Materials13
3-2.1 Substrates13
3-2.2 The surface cleaning reagents13
3-2.3 Monomers of plasma deposition14
3-2.4 Reagents used in grafting
polymerization14
3-3 Procedures14
3-3.1 Substrates preparation14
3-3.2 Deposition of sensitive films by
PECVD15
3-3.3 Photo-induced PAAm grafting
copolymerization15
3-3.4 Selective grafting15
3-4 Equipments16
3-4.1 Plasma reactors16
(a) Radio frequency (R.F.) generator16
(b) Bell-Jar reactor16
(c) Vacuum pump16
(d) Gas supply system16
3-4.2 Photo-induced grafting systems17
3-5 Analysis and test17
3-5.1 Characteristic analyses17
(a) Wettability test17
(b) Measurement of film thickness17
(c) ESCA (XPS) analysis17
(d) SEM morphology18
(e) Infrared analysis18
3-5.2 Evaluation of sensors18
3-5.3 Gas sensing18
Chapter 4 Results and Discussion20
4-1 Plasma deposited SnOx organic-like films20
4-1.1 Deposited thickness20
4-1.2 The effect of addition oxygen
gas20
4-1.3 SEM morphology of SnOx organic-like
films21
4-2 Surface grafting of AAm onto SnOx organic-like
films22
4-2.1 Wettability of photo-induced grafting
AAm surface 22
4-2.2 The effect of monomer pressure22
4-3 Composition analysis23
4-4 Chemical structures of PECVD SnOx organic-like
films24
4-5 Impedance of PECVD SnOx organic-like films 25
4-5.1 Electrical properties of films25
4-5.2 Temperature sensing25
4-5.3 The Calculation of Active Energy 25
4-5.4 Humidity sensing27
4-5.5 Response time of the humidity sensor 28
4-6 Bi-grafting of monomer onto plasma films29
Chapter 5 Conclusion30
References31
List of Table
Table I The relationship between TMT vapor and plasma energy34
Table II Atomic composition of SnOx organic-like films (by ESCA)35
Table III Effect of O2 plasma post treatment on the composition
of SnOx organic-like films (by ESCA)35
Table IV Wettability of surface modified substrates36
List of Figures
Fig. 2-1 Temperature dependence of conductivity.37
Fig. 2-2 Temperature dependence of electrical conductivity for
a doped (n-type) semiconductor.38
Fig. 3-1 Impedance-type sensitive devices fabricated by the
semiconductor processes on Si-wafer.39
Fig. 3-2 The sensitive device: one unit sensor (a) top view,
(b) side view.40
Fig. 3-3 The sensitive device: two-unit compositive sensors
(a) top view, (b) side view.41
Fig. 3-4 The mask pattern (one device).42
Fig. 3-5 The schematic diagram of the comb-shaped
(Interdigital) electrode made by screen printing
method.43
Fig. 3-6 Sensor arrays (a) Integrated multifunctional sensors
on Si-wafer (b) Interdigital electrodes on Al2O3
substrates.44
Fig. 3-7 The plasma reactor-Radio Frequency (R.F.) 13.56 MHz
generator.45
Fig. 3-8 The equipment for Photo-induced (UV-light) surface
grafted copolymerization.46
Fig. 3-9 The principle of Photo-induced (UV-light) surface
grafted copolymerization with AAm monomer.47
Fig. 4-1 The relationship between the monomer concentrations of
TMT and the thickness of PECVD SnOx organic-like
films.48
Fig. 4-2 The relationship between water contact angle of PECVD
SnOx organic-like films and the monomer concentration
of TMT.49
Fig. 4-3 Micro FT/IR spectra of PECVD tin-oxide (SnOx) organic-
like films from TMT/O2 mixed gases.50
Fig. 4-4 The spectra of ESCA (XPS) peaks of PECVD SnOx
organic-like films.51
Fig. 4-5 The Sn3d5/2 and Sn3d3/2 XPS peaks of PECVD SnOx
organic-like films.52
Fig. 4-6 The O1s spectra of XPS peaks of PECVD SnOx organic-
like films.53
Fig. 4-7 The C1s spectra of XPS peaks of PECVD SnOx organic-
like films.54
Fig. 4-8 The Sn3d5/2 and Sn3d3/2 XPS peaks of PECVD SnOx
organic-like films after O2 plasma post treatment.55
Fig. 4-9 SEM micrographs of PECVD SnOx organic-like films.
Plasma conditions:Power 50W, Time 10min. (a)
TMT:O2=20:20 mtorr, (b)TMT:O2=40:20 mtorr, (c)
TMT:O2=60:20 mtorr, (d)TMT:O2=80:20 mtorr (×30K,
Substrate:Si-device).56
Fig. 4-10 SEM micrographs of PECVD SnOx organic-like films.
Plasma conditions:power 50W, time 10min. (a)Si-wafer
substrate, (b)TMT:O2=20:20 mtorr, (c)deposited films
grafting AAm, (d)deposited films+O2 plasma (×30K). 57
Fig. 4-11 SEM micrographs of PECVD SnOx organic-like films.
Plasma conditions:Power 50W, Time 10min. (a)
TMT:O2=20:20 mtorr (×30K), (b)TMT:O2=20:20 mtorr (×
5K), (c)TMT:O2=40:20 mtorr (×30K), (d)TMT:O2=40:20
mtorr (×5K) (Substrate:Si-device).58
Fig. 4-12 The relationship between the temperature and the
impedance of PECVD SnOx organic-like films. Plasma
conditions:(TMT:O2=X:20 mtorr, X=20/40/60/80 mtorr,
10 min., 50W) R.H. 40%.59
Fig. 4-13 The relationship between the temperature and the
impedance of PECVD SnOx organic-like films. Plasma
conditions:(TMT:O2=20:20 mtorr, 50W, deposited time:
5, 10, 20min.) R.H. 45%.60
Fig. 4-14 The relationship between the reciprocal of
temperature and the logarithmic impedance of PECVD
SnOx organic-like films for calculating active
energy. Plasma conditions:(TMT:O2=20:20 mtorr, 50W,
deposited time: 5, 10, 20min.) R.H. 45%.61
Fig. 4-15 The relationship between the active energy and the
deposited time of PECVD SnOx organic-like films.
Plasma conditions:(TMT:O2=20:20 mtorr, 50W,
deposited time: 5, 10, 20min.) R.H. 45%.62
Fig. 4-16 The relationship between the temperature and the
impedance of PECVD SnOx organic-like films. Plasma
conditions:(TMT:O2=20:20 mtorr, 50W, deposited time:
5, 10, 20min.) R.H. 75%.63
Fig. 4-17 The relationship between the related humidity and the
impedance of PECVD SnOx organic-like films. Plasma
conditions:(TMT:O2=X:20 mtorr, X=20/40/60/80 mtorr,
10 min., 50W) Temp. 25℃.64
Fig. 4-18 The relationship between the related humidity and the
impedance of PECVD SnOx organic-like films grafted
with AAm. Plasma conditions:(TMT:O2=X:20 mtorr,
X=20/40/60/80 mtorr, 10 min., 50W), UV-induced
grafting:(500W, 30min., 10wt.% AAm) Temp. 25℃. 65
Fig. 4-19 The relationship between the related humidity and the
impedance of PECVD SnOx organic-like films. Plasma
conditions:(TMT:O2=20:20 mtorr, 50W, deposited time:
5, 10, 20min.) Temp. 25℃.66
Fig. 4-20 The relationship between the related humidity and the
impedance of PECVD SnOx organic-like films grafted
with AAm. Plasma conditions:(TMT:O2=20:20 mtorr,
50W, deposited time: 5, 10, 20min.), UV-induced
grafting:(500W, 30min., 10 wt.% AAm) Temp. 25℃. 67

References:
1. 陳克紹,曹永偉編譯,"感測器原理與應用技術"全華科技圖書,台北
市,1986.
2. Tahar, R.B. Hadj, J. American Ceramic Soc., 81(2) 1998, pp.
321-327.
3. E.W. Williams, J. Materials Science: Materials in
Electronics, 9(1) 1998, pp. 51-54.
4. A. Mills, Sensors and Actuators, B: Chemical B39, 1997, p
419-425.
5. Proceedings of SPIE-The International Society for Optical
Engineering Munich, Ger, Jun 21 1995 v 2503, (1995).
6. D. Zehrbach, Sensors, 15(4), 1998, pp. 49-50, 52.
7. D. R. Crotzer, Sensors, 15(5), 1998, p 92.
8. D. R. Crotzer, Sensors, 15(5), 1998, p 94.
9. D.R. Crotzer, Sensors, 15(5), 1998, pp. 96-98.
10. Proceedings of the IEEE Micro Electro Mechanical Systems
(MEMS), Heidelberg, Ger, Jan 25-29, 1998.
11. M.R. Yang, K. S. Chen, Sensors and Actuators B Chemical,
B49, 1998, pp. 240-248.
12. H.Yasuda ed., “Plasma Polymerization”, Academic Press,
lnc., Orando, 1985.
13. N. Inagaki ed., ”Plasma surface modification and plasma
polymerization”, Technomic Publishing Company, Lancaster
basel (1996).
14. 陳克紹等,”以丙醯烯胺接枝之電漿沉積膜與無機材料鍵結蛋白質介
層研究”,中華醫學工程學刊,13, No.3, pp.211-8(1993).
15. 陳克紹等,”利用接枝法改善高分子的表面濕滑性研究”,中華醫學
工程學刊,14, No.3, pp.255-267(1994).
16. 金城德幸,大原周一,菅原徹,士谷茂樹:機能材料, 11, pp.17-
27 (1986).
17. K. Nakanishi, et.al.,1996. Anal. Chem 68, 1695~1700.
18. E. Radeva , 1997. Sensors & Actuators B 44, 275~278.
19. 陳克紹,王國章,Chinese J. Materials Sci., Vol. 22, No.1
pp51~61 (1991).
20. N. Kinjo, S. Ohara, T. Sugawara, and S. Tsuchitani, Poly.
J. Vol. 15, No.15, pp.621-623 (1983).
21. 陳克紹等:“以丙醯烯胺接枝之電漿沉積膜為無機材料鍵結蛋白質介
層研究“,中華醫學工程學刊, 13, 3, pp.211- 218, 1993.
22. Roopali Srivastava*, R. Dwivedi, S.K. Srivastava, “Effect
of oxygen and hydrogen plasma treatment on the room
temperature sensitivity of SnO2 gas sensors”,
Microelectronics Journal 29 (1998) 833-838.
23. M. Millard, in J. R. Hollahan and A. T. Bell (ed.),
Techniques and Applications of Plasma Chemistry. Wiley, New
York, 1974, Chapter 5.
24. H. Yasuda, Applied Polymer Symp., 22 (1973) 244-253.
25. W. D. Freitag, H. Yasuda and A. K. Sharma, Org. Coat. Appl.
Polym. Sci. Proc., 47 (1982) 449-453.
26. N. Inagaki and M. Mitsuuchi, J. Polym. Sci., Polym. Lett.
Edn., 22 (6) (1984) 301.
27. TDK Corporation, Jpn. Kokai Tokkyo Koho JP 58, 222, 115,
1983.
28. R. W. Murray, Acc. Chem. Res., 13 (1980) 135.
29. E. Kny, L. L. Levenson, W. J. James and R. A. Auerbach,
Thin Solid Films, 85 (1) (1981) 23.
30. N. Inagaki, T. Yagi and K. Katsuura, Eur. Polym. J., 18 (7)
(1982) 621.
31. E. Kny, L. L. Levenson, W. J. James and R. A. Auerbach,
Thin Solid Films, 64 (3) (1979) 395.
32. M. Yamada, J. Tamano, K. Yoneda, S. Morita and S. Hattori,
Jpn. J. Appl. Phys. Part 1, 21 (5) (1982) 768.
33. Herman V. Boening, " Fundamentals of Plasma Chemistry and
Technology ", Technomic Publication.
34. J. D. Cobine, edited “Gaseous Conductors” Dover, New York.
35. You-Lo Hsieh and Meiping Wu, J.Appl. Polym. Sci. Vol 43, pp
2067-2082 (1991).
36. You-Lo Hsieh, Derbra A. Timm and Meiping Wu, J.Appl. Polym.
Sci.,Vol pp 1736-1737 (1988).
37. Schultz, Terold, “ Polymer Material Science “ Prenticle-
Hall Publication 1974, New Jersey.
38. Toshihiro Hirotso and Shigeru Nakajima, J. Appl Polym.
Sci., Vol. 36, pp. 177-189 (1988).
39. 林和子, 福村裕史, 山本襄, 山下岩男, 高分子論文集Vol.44, NO
6, pp. 429-436 (1987).
40. 陳克紹, O. Tsuji, 筏義人, 中華民國第十五屆高分子研討會論文專
集, P 945, 1992, Taiwan.
41. S. O. Kasap, “Principles of Electrical Engineering
Materials and Devices”, Revised Edition, Chapter 5, pp.
330-340.
42. S.A. Krutovertsev, A.E. Tarasova, L.S. Krutovertseva, A.V.
Zorin, Integrated multifunctional humidity sensor, Sensors
and Actuators A 62 (1997) 582-585.
43. G. Sberveglieri, R. Murri and N. Pinto, Characterization of
porous Al2O3/SiO2-Si sensor for low and medium humidity
ranges, Sensors and Actuators B, 23 (1995) 177-180.
44. T. Kuroiwa, T. Miyagishi, A. Ito, M. Matsuguchi, Y. Sadaoka
and Y. Sakai, A thin-film polysulfone-based capacitive-type
relative-humidity sensor, Sensors and Actuators B, 25
(1995) 692-695.
45. K. Stephenson, Application of a surface conductivity
moisture sensor in integrated circuit packaging, Solid
Stale Technol., (June) (1980) 34-38.
46. K.H. Kim and C.G. park, Electrical properties and gas-
sensing behavior of SnO2 films prepared by chemical vapor
deposition, J. Electrochem. Soc., 138 (1991) 2408-2412.
47. Chaonan Xu, J. Tamaki, N. Miura and N. Yamazoe, Grain-size
effects on ges sensistivity of porous SnO2-based elements,
Sensors and Actuators B, 3 (1991) 147-155.
48. Z.M.Jarzebski, “Oxide Semiconductors”, Pergamon Press.
Oxford-New York (1973).
49. A.L. Dawan and J.C.Josni, J.Mater. Soci., 19 (1984), p.1.
50. J. Watson, The tin oxide gas sensor and its applications.
Sens. Actuators 5 (1984) 29-42.
51. K. Takahata, Tin dioxide sensors─development and
applications, in: T. Seiyama (Ed.), Chemical Sensors
Technology vol. 1 Elsevier, Amsterdam, 1988, pp. 39-45.
52. K. Ihokura, J. Watson, The Stannic Oxide Gas Sensor:
Principles and Applications, CRC Press. Boca Raton, FL,
1994.
53. W. Göpel, K.-D. Schierbaum, SnO2 gas sensors: current
status and future prospects, Sens. Actuators, B 26-27
(1995) 1-12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔