(3.239.33.139) 您好!臺灣時間:2021/03/07 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李秉儒
研究生(外文):Ping-Ju Li
論文名稱:表面處理對鐵鋁基合金表面層之生成與特性之影響
論文名稱(外文):The Effect of Surface Treatment on The Formation of Surface Layer of FeAl Alloy and Their Properties
指導教授:邱六合
指導教授(外文):Liu-Ho Chiu
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:85
中文關鍵詞:鐵鋁基合金表面改質陽極處理
外文關鍵詞:Iron AluminateSurface modificationAnodizing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
鑑於常溫下鐵鋁基合金的環境脆化肇因於水氣,吾人嘗試用熱機處理來改善延性,也有利用表面改質來隔絕水氣以防止氫脆,若將兩者合併使用,或可達到更佳的效果。本研究之目的在對熱機處理後鐵鋁基合金進行各種表面處理,試行在鐵鋁基合金表面形成氧化層或鈍化層,以不同的酸鹼之電解液,及改變濃度、電壓、電流密度及時間等製程參數進行陽極處理,以及化成處理和其他改質處理測試如高溫裝匣來獲得表面改質層,透過拉伸試驗測試來評估以上改質成功者對鐵鋁基合金室溫延性改善之效益,並比較其與高溫氧化層產生保護作用之差異。實驗結果顯示:鐵鋁基合金的室溫陽極處理無法有效產生氧化層,但在極化曲線的測試中得知鐵鋁基合金在氫氧化鈉和磷酸中有鈍化區的存在,可利用此一特性在惰性區採定電位或電流密度的方式或可產生鈍化膜。鋼鐵的化成處理對鐵鋁基合金不適用,Fe28Al系列及含Cr者無法生成附著性高之改質層,僅有Fe18Al的改質層有較佳附著性,經拉伸試驗後發現延伸率並未大幅改善。高溫裝匣氧化層附著性不佳,卻可使拉伸率大幅增加,磨去表面氧化層仍可保持較高的拉伸率,可能是高溫長時間退火導致試片軟化之故。綜合以上,僅高溫裝匣氧化法對鐵鋁基合金有較佳的抗環境脆化效果。

Abstract
Because the environmental embrittlement of Fe-Al alloy in room temperature, several technique have been derived to avoid embrittlement or reduce its severity. These include hot work and surface modification. The purpose of the research is to evaluate the effects of anodizing, blacking and packing on the formation oxide layer of Fe-Al alloy and their mechanical property at room temperature. The experimental results reveal that the anodizing of Fe-Al could not provide an oxide film. In the test of polarization curve, we find that curve shows passivation of Fe-Al in H3PO4 and NaOH. Blacking process is not suitable for Fe28Al and Fe3Al-Cr, because of the combination between oxide layer and substrate. The oxide layer on Fe18Al is successfully combined, but have poor RT elongation. High temperature surface modification have the excellent RT elongation, even greed the oxide layer. It could be the long time annealing resulted in the softness of Fe-Al.

Abstract
Because the environmental embrittlement of Fe-Al alloy in room temperature, several technique have been derived to avoid embrittlement or reduce its severity. These include hot work and surface modification. The purpose of the research is to evaluate the effects of anodizing, blacking and packing on the formation oxide layer of Fe-Al alloy and their mechanical property at room temperature. The experimental results reveal that the anodizing of Fe-Al could not provide an oxide film. In the test of polarization curve, we find that curve shows passivation of Fe-Al in H3PO4 and NaOH. Blacking process is not suitable for Fe28Al and Fe3Al-Cr, because of the combination between oxide layer and substrate. The oxide layer on Fe18Al is successfully combined, but have poor RT elongation. High temperature surface modification have the excellent RT elongation, even greed the oxide layer. It could be the long time annealing resulted in the softness of Fe-Al.

參考文獻
1.V. K. Sikka, S Viswanatyan, and C. G. McKamey, ”Development and Commercialization Status of Fe3Al-Based Intermetallic Alloys.” Oak Ridge National Laboratory P.O. Box 2008 (1993) p.483.
2.M. G. Mendiratta, S. K. Ehlers, D. M. Dimiduk, W. R. Kerr, Mat. Rev. Soc. Symp. Proc., 81 (1987) p.393.
3.I. Baker, P. Nagpal, “A Review of the Flow and Fracture of FeAl.” Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (1993) p.463.
4.C. G. McKamey, J. H. DeVan, P. F. Tortorelli, and V. K. Sikka, “A review of recent developments in Fe3Al-based alloys.” J. Mater. Res., Aug (1991), Vol. 6, No. 8, p.1779.
5.C. T. Liu, E. H. Lee, and C. G. McKamey, “An Environmental effect as the Major cause for Room-temperature embrittlement in FeAl.“ Scripta Metallurgica, (1989) Vol. 23, p. 875
6.C.-H. Xu and W. Gao, “Oxidation behaviour of FeAl intermetallics: effects of reactive elements on cyclic oxidation properties.” Materials Science and Technology, Mar (2001), Vol. 17, p.324.
7.劉展東、張明財、開物:添加釔對Fe-28Al-5Cr合金在H2/H2S/H2O混合氣氛下之高溫腐蝕效應。第二屆海峽兩岸材料腐蝕與防護研討會論文集,2000年10月 第84~89頁。
8.C. T. Liu, C. L. Fu, E. P. George and G. S. Painter, “Environmental Embrittlement in FeAl Aluminides.” ISIJ International, (1991), Vol. 31, No. 10, p.1192.
9.K. N. Strafford and P. K. Datta, “Design of sulphidation resistant alloys.” Materials Science and Technology, Aug (1989), Vol. 5, p.765.
10.D. J. Gaydosh and M. V. Nathal, “Influence of testing environment on the Room temperature ductility of FeAl alloys.” Scripta Metallurgica et Materialia, (1990), Vol. 24, p.1281.
11.C. T. Liu and E. P. George, “Environmental embrittlement in Boron-Free and Boron-Doped FeAl (40 at.% Al) alloys.” Scripta Metallurgica et Materialia, (1990), Vol. 24, p.1285.
12.D. Hardwick and G. WallWork, Rev. High Temp. Mater ,4(1978). 47
13.D. J.Dugquette Mat, Sci, amd Eng. ,A198 (1995), p.205.
14.W. Kohn and L. J. Sham, Phy. Rev. A,(1965), p.1133.
15.G. S. Painter and F. W. Averill, Phys. Rev B, 28 (1983), p. 5536.
16.P. J. Maziasz, C. T. Liu and Gene M. Goodwin, “Overview of the Development of FeAl Intermetallic Alloys, Oak Ridge National Laboratory Report, September, 1995
17.D. G. Morris, M. M. Dadras and M. A. Morris, “The influence of Cr addition on the ordered microstructure and deformation and fracture behaviour of a Fe-28%Al intermetallic.” Acta metall. Mater., (1993), Vol. 41, No. 1, p.97.
18.D. A. Alven and N. S. Stoloff, “The influence of composition on the environmental embrittlement of Fe3Al alloys.” Materials Science and Engineering A239-240, (1997), p.362.
19.C. G. McKamey, P. J. Maziasz, G. M. Goodwin and T. Zacharia, “Effects of alloying additions on the microstructures, mechanical properties and weldability of Fe3Al-based alloys.” Materials Science and Engineering A174, (1994), p.59.
20.C. G. McKamey and C. T. Liu, “Chromium addition and environmental embrittlement in Fe3Al.” Scripta Metallurgica et Materialia, (1990), Vol. 24, p.2119.
21.D. G. Morris, D. Peguiron, M. Nazmy and C. Noseda, “Microstructure and mechanical properties of an Fe-Al alloy of low aluminium content.” Materials Science and Engineering A191, (1995), p.91.
22.Yin Yan Sheng, Fan Run Hua and Xie Yong Sheng, “The effect of chromium on the valence electron structure of Fe3Al intermetallic compounds (ternary).” Materials Chemistry and Physics 44, (1996), p.190.
23.朱瑾:鐵鋁基合金的開發與應用。工業材料116期,第67頁。
24.許樹恩、李滄曉:介金屬之研究、應用現況與發展。礦冶37/2。
25.C. G. McKamey and D. H. Pierce, “Effect of recrystallization on room temperature tensile properties of an Fe3Al-based alloy.” Scripta Metallurgica et Materialia, (1993), Vol. 28, p.1173.
26.P. Kratochvil, M. Karlik, P. Hausild and M. Cieslar, “Influence of annealing on mechanical properties of an Fe-28Al-4Cr-0.1Ce alloy.” Intermetallics 7, (1999), p.847.
27.D. G. Morris and M. A. Morris-Munoz, “The influence of microstructure on the ductility of iron aluminides.” Intermetallics 7, (1999), p.1121.
28.Mingwei Chen, Dongliang Lin, Yuanming Xia and C. T. Liu, “Strain rate sensitivity of ductility and fracture behaviors in a Fe-28Al alloy.” Materials Science and Engineering A239-240, (1997), p.317.
29.M. M. Dadras and D. G. Morris, “Mechanical disordering of Fe-28%Al-4%Cr alloy.” Scripta Metallurgica et Materialia, (1993), Vol. 28, p.1245.
30.魯萬鈞、吳建國:Fe3Al基合金晶粒大小對環境脆化之影響。第二屆海峽兩岸材料腐蝕與防護研討會論文集,2000年10月第265~270頁。
31.C. G. McKamey, V. K. Sikka and G. M. Goodwin, “Development of ductile Fe3Al-based aluminides.” Oak Ridge National Laboratory P. O. Box 2008, (1993), p.161.
32.Vnod K. Sikka, Ph. D. and Chain T. Liu, Ph. D., “Iron-Aluminide alloys for structural use.” Elsevier Science Inc., Mat Tech 9 (7/8), (1994), p.159.
33.J. F. Nachman and E. R. Duffy, “Effect of alloying additions on sea water corrosion resistance of iron-aluminum base alloys.” Coorosion 30, (1994), p.357.
34.R. A. Buchanan and J. G. Kim, in ORNLIFMP-9012 (U. S. Rept. Of energy, Tn, 1990)
35.H. Chiu, L. Qiao and X. Mao, “Environment-assisted cracking of iron aluminide in 3.5% NaCl solution.” Scripta Materialia, (1996), Vol. 34, No. 6, p.963.
36.J. G. Kim and R. A. Buchanan, “Pitting and crevice corrosion of iron aluminides in a mild acid-chloride solution.” Corrosion, (1994), Vol. 50, No. 9, p.658.
37.O. Seri and M. Imaizumi, “The dissolution of FeAl3 intermetallic compound and deposition on aluminum in AlCl3 solution.” Corrosion Science, (1990), Vol. 30, p.1121.
38.T. Takasugi, T. Misawa and H. Saitoh, “Effect of hydrogen-solute interaction on the environmental embrittlement of ordered intermetallics.” Materials Science and Engineering A192/193, (1995), p.413.
39.江慶宗:大同工學院材料工程研究所碩士論文。中華民國八十五年七月。
40.張傑榮:國立海洋大學材料工程研究所碩士學位論文。中華民國八十六年六月。
41.黃冠猷:大同工學院材料工程研究所碩士論文。中華民國八十六年七月。
42.Liu-Ho Chiu, Pee-Yew Lee and Chieh-Lung Chang, “Effect of surface modification on room temperature tensile properties for Fe-18Al and Fe-18Al-5Cr alloys.”
43.Zhang Zhonghua, Sun Yangshan, Liu Guijun and Guo Jun, “Ductility improvement of Fe3Al-based alloy with surface coating.” Scripta Materialia, (1996), Vol. 35, No. 9, p.1071.
44.N. De Cristofaro, S. Frangini and A. Mignone, “Passivity and passivity breakdown on a β-FeAl intermetallic compound in sulphate and chloride containing solutions.” Corrosion Science, (1996), Vol. 38, No. 2, p.307.
45.S. Frangini, N. De Cristofaro, J. Lascovich and A. Mignone, “On the passivation characteristics of a β-FeAl intermetallic compound in sulphate solutions.” Corrosion Science, (1993), Vol. 35, Nos 1-4, p.153.
46.H. Konno, K. Utaka and R. Furuichi, “A two step anodizing process of aluminium as a means for improving the chemical and physical properties of oxide films.” Corrosion Science, (1996), Vol. 38, No. 12, p.2247.
47.K. Shimizu, K. Kobayashi, P. Skeldon, G. E. Thompson and G. C. Wood, “Anodic oxidation of zirconium covered with a thin layer of aluminium.” Thin Solid Films 295, (1997), p.156.
48.Jin Kawakita and Kenzo Kobayashi, “Anodic oxidation behaviour of aluminium in propylene carbonate.” Journal of Power Sources 90, (2000), p.182.
49.Q. Zhang and W. Wang, “Study of anodizing behavior and corrosion resistance of 7050 T7451 alloy.” Materials Science and Engineering A280, (2000), p.168.
50.Re-Long Chiu, Peng-Heng Chang and Chih-Hang Tung, “The effect of anodizing temperature on anodic oxide formed on pure Al thin films.” Thin Solid Films 260, (1995), p.47.
51.X. Zhou, G. E. Thompson, P. Skeldon, G. C. Wood, K. Shimizu and H. Habazaki, “Anodic oxidation of an Al-2wt% Cu alloy: effect of grain orientation.” Corrosion Science 41, (1999), p.1089.
52.J. De. Laet, X. Zhou, P. Skeldon, G. E. Thompson, G. C. Wood, H. Habazaki, K. Takahiro, S. Yamaguchi and K. Shimizu, “The behaviour of chromium during anodizing of Al-Cr alloys.” Corrosion Science 41, (1999), p.213.
53.Sung-Mo Moon and Su-Il Pyun, “The formation and dissolution of anodic oxide films on pure aluminium in alkaline solution.” Electrochimica Acta 44, (1999), p.2445.
54.H. Habazaki, X. Zhou, K. Shimizu, P. Skeldon, G. E. Thompson and G. C. Wood, “Incorporation and mobility of zinc ions in anodic alumina films.” Thin Solid Films 292, (1997), p.150.
55.S. K. Wu and Mu-Rong Yang, “Improvement of the high-temperature oxidation of Ti-50Al by anodic coating in the phosphoric acid.”
56.K. Stein-Fechner, J. Konys and O. Wedemeyer, “Investigations on the transformation behavior of the intermetallic phase (Fe, Cr)2Al5 formed on MANETⅡ steel by aluminizing.” Journal of Nuclear Materials 249, (1997), p.33.
57.H. Glasbrenner and O. Wedemeyer, “Comparison of hot dip aluminised F82H-mod. steel after different subsequent heat treatments.” Journal of Nuclear Materials 257, (1998), p.274.
58.Hsing-Hsiang Shih and Shiang-Lin Tzou, “Study of anodic oxidation of aluminum in mixed acid using a pulsed current.” Surface and Coatings technology 124, (2000), p.278.
59.J. C. M. Li and C. T. Liu, “ Kinetic and equilibrium effects in the environmental embrittlement of ordered intermetallics.” Scripta Metallurgica et Materialia, (1995), Vol. 33, No.4, p.661.
60.C. T. Liu, “Recent advances in ordered intermetallics.” Materials Chemistry and Physics 42, (1995), p.77.
61.D. L. Joslin, D. S. Easton, C. T. Liu and S. A. David, ”Reaction synthesis of Fe-Al alloys.” Materials Science and Engineering A192/193, (1995), p.544.
62.B. Sprusil and B. Chalupa, “Resistance changes in Fe-15 at% Al.” Intermetallics 7, (1999), p.1295.
63.Frederick D. Geib and Robert A. Rapp, “Diffusion Coatings For Iron Aluminide(Fe3Al) Via Halide-Activater Pack Cementation.” Processing and Fabrication of Advanced Materials for High Temperature Application Edited by V. A. Ravi and T. S. Srivatsan The, Mineral, Metals and Materials Society, 1992
64.正文書局編譯委員會譯編:表面處理法。第50~60頁。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔