跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡怡賢
研究生(外文):Yi-Hsien Tsai
論文名稱:2.4GHz外差式接收器之CMOS前級電路設計
論文名稱(外文):A CMOS RF FRONT-END DESIGN FOR 2.4 GHz HETERODYNE RECEIVER
指導教授:黃淑絹黃淑絹引用關係
指導教授(外文):Shu-Chuan Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:接收器被動元件雜訊因素轉換增益相位雜訊低雜訊放大器混波器電壓控制振盪器
外文關鍵詞:RECEIVERPASSIVE COMPONENTSNOISE FIGURECONVERSION GAINPHASE NOISELOW NOISE AMPLIFIERMixerVOLTAGE-CONTROLLED OSCILLATOR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
隨著CMOS電晶體通道長度的縮小,設計出一個低價、 低功率、 高度整合的晶片已成為一種趨勢。 因此, 本論文設計一個外差式接收器的CMOS RF前級。此接收器包含低雜訊放大器,兩個混頻器,和電壓控制振盪器。 我們使用單端低雜訊放大器和雙端混頻器,以獲得較好的線性特性。 此單端低雜訊放大器提供14.8 dB增益, 9.1 dBm IIP3, 和 1.3 dB雜訊因素。 而第一個混頻器則提供12.3 dB轉換增益, 20.4 dB的雜訊因素, 和-2.4 dBm IIP3。第二個混頻器提供 11.67 dB 轉換增益, 3.41的雜訊因素, 和-5.45 dBm IIP3。 此電壓控制振盪器在600KHz偏移頻率的相位雜訊為-100 dBc, 且其調整靈敏度為73.6MHz/V。 此電路是用安捷倫EEsoft EDA-RFIC及TSMC 0.35 μm CMOS製程參數模擬, 且結果顯示整體的雜訊因素為2.7456 dB、 -1.2 dBm IIP3、和148.17 mW功率消耗。

With the scaling down of CMOS technology, it has became a new trend to design a CMOS IC with low cost, low power and high integration. Therefore, a CMOS RF front-end for a heterodyne receiver is designed in this thesis. The front-end circuit includes an LNA, two mixers and a VCO. In order to have a better linearity, a single-ended LNA and double-balanced mixers are employed. The single-ended LNA provides 14.8 dB Gain, 9.1 dBm IIP3, and 1.3 dB noise figure. The first mixer provides 12.3 dB conversion gain, 20.4dB noise figure, and —2.4dBm IIP3. The second mixer provides 11.7dB conversion gain, 23.4dB noise figure, and —5.5dBm IIP3. The VCO has —100 dBc phase noise at 600KHz offset, and 76.3MHz/V tuning sensitivity. The circuits are simulated with Agilent EEsof EDA-RFIC Designer in 0.35 μm TSMC technology, and the results show 2.7 dB overall noise figure, —1.2 dBm IIP3, and 148.17 mW power consumption.

ABSTRACT (in Chinese) Ⅰ
ABSTRACT (in English) Ⅱ
ACKNOWLEDGEMENT Ⅲ
CONTENTS Ⅳ
LIST OF FIGURES Ⅶ
LIST OF TABLES Ⅹ
1 INTRODUCTION 1
1.1 Motivation 1
1.2 Organization 2
2 ARCHITECTURE OF THE RECEIVER FRONT-END 3
2.1 Heterodyne or IF Receiver 3
2.1.1 Single-Stage Receiver 3
2.1.2 Multi-Stage Receiver 4
2.2 Problem of the Heterodyne Architecture 5
2.3.1 Problem of Image 5
2.3.2 Problem of HalfIF 6
2.3 Heterodyne Fundamental 6
2.4.1 Noise Figure 6
2.4.2 Third-Order Intercept 8
2.4.3 Spurious-Free Dynamic Range 8
3 COMPONENTS OF THE HETERODYNE RECEIVERS 10
3.1 Inductor 10
3.11 Planar Inductor 10
3.12 Inductor model 11
3.2 MOSFET 12
3.2.1 Thermal Noise 13
3.2.2 FlickerNoise 13
3.2.3 Design of RF MOSFET 14
3.3 LNA 14
3.3.1 The Input Impedance 14
3.3.2 Noise Performance 16
3.4 Single-Ended And Differential LNA 16
3.4.1 Single-Ended LNA 16
3.4.2 Differential LNA 17
3.5 Mixer 18
3.5.1 Introduction 18
3.5.2 Passive and Active Mixer 18
3.5.3 Fundamental of Mixer 19
3.5.4 Conversion Gain 21
3.5.5 Linearity 21
3.5.6 Isolation 22
3.5.7 Single-Balanced Mixer 22
3.5.8 Double-Balanced Mixer 24
3.6 Voltage-Controlled Oscillator 27
3.6.1 Introduction 27
3.6.2 Phase Noise 27
3.6.3 Phase Noise in Receiver 29
3.6.4 Varactor 32
3.6.5 Negative Resistance Oscillator 32
4 HETERODYNE RECEIVER IMPLEMENTATION 37
4.1 Overview 37
4.2 Single-Ended LNA 37
4.2.1 LNA Implementation 37
4.2.2 Simulation Results 39
4.3 Double-Balanced Mixer 41
4.3.1 Mixer Implementation 41
4.3.2 Simulation Results 42
4.3.2.1 The First Mixer 42
4.3.2.2 The Second Mixer 46
4.4 Voltage-Controlled Oscillator 48
4.4.1 VCO Implement 48
4.4.2 Simulation Results 49
4.5 The Overall 51
5 CONCLUSION 53
REFERENCES 54

[1] L. E. Larson, “Integrated circuit technology options for RFIC's--Present status and future directions,” IEEE J. Solid-State Circuits, vol. 33, pp. 387-399, Mar. 1998.
[2] M. Steyaert, M. Borremans, J. Janssens, B. De Muer, N. Itoh, J. Craninckx, J. Crols, E. Morifuji, H. Sasaki, and W. Sansen, “A single-chip CMOS transceiver for DCS-1800 wireless communications,” ISSC Dig. Tech. Papers, San Francisco, CA, Feb, 1998, pp. 48-49.
[3] P. Orsatti, F. Piassz, Q. Huang, and T. Morimoto, “A 20mA-receive, 55mA-transmit, single-chip GSM transceiver in 0.25 μm CMOS,” Int. Solid-State Circircuits. Conf. Dig. Tech. Papers, Feb. 1999.
[4] Q. Huang, P. Orsatti, and F. Piazza, “GSM transceiver front-end circuits in 0.25 μm CMOS,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 292-303, March 1999.
[5] A. R. Shahani et al., “A 12-mW wide dynamic range CMOS front-end for a portable GPS receiver,” IEEE J. Solid-State Circuits, vol32, no. 12, pp. 2061-2070, December 1997.
[6] Jan Crols, and Michel S. J. Steyaert, “A Single-Chip 900 MHz CMOS Receiver Front-End with a High Performance Low-IF Topology,” IEEE J. Solid-State Circuits, vol. 30, pp. 1483-1492, December 1995.
[7] A. Rofougaran, J. Y. C. Chang, M. Rofougaran, and A. A. Abidi, “A 1GHz CMOS RF front-end IC for a direct-conversion wireless receiver,” IEEE J. Solid-State Circuits, vol. 31, no.7, pp. 880-889, July 1996.
[8] Jan Crols, and Michel Steyaert, CMOS Wireless Transceiver Design. Kluwer Academic publishers.
[9] B. Razavi, “Design Considerations for Direct-Conversion Receivers,” IEEE J. Solid-State Circuits, vol. 44, pp. 428-435, June 1997.
[10] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, 1998.
[11] S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, “Simple Accurate Expressions for Planar Spiral Inductors,” IEEE J. Solid-State Circuits, vol. 34, pp. 1419-1424, October 2000.
[12] Jan Craninckx, and Michiel S. J. Steyaert, “A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors,” IEEE J. Solid-State Circuits, vol. 32, pp.736-744, May 1997.
[13] David A. Johns and Ken Martin, Analog Integrated Circuit Design, New York: John Wiley & Sons, Inc., 1997.
[15] W. Liu, et al., “RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model,” IEDM Tech. Dig., pp. 309-312, Dec. 1997.
[16] D. R. Pehike, et al., “High frequency application of MOS compact model and their development for scalable RF model libraries,” Proc. Of CICC, pp. 219-222, May 1998.
[17] J.-J. Ou, et al., “CMOS RF modeling for GHz communication IC’s,” VLSI Symp. On Tech, Dig. Of Tech. Papers, pp. 94-95, June 1998.
[18] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, May 1997.
[19] Peter Vizmuller, RF Design Guide: Systems, Circuits, and Equations, Boston-London: Artech House, 1995.
[20] Keng Leong Fong, and Robert G. Meyer, “Monolithic RF Active Mixer Design,” IEEE Transactions on circuits and systems-II: Analog and Digital Signal Processing, vol. 46, pp. 231-238, March 1999.
[21] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer,” IEEE J. Solid-State Circuits, vol. 32, pp 1151-1155, July 1997.
[22] B. Razavi, “A 1.5 V 900MHz downconversion Mixer,” IEEE Int. Solid-State Circuits, pp. 48-49, June 1996.
[23] A. N. Karanicolas, “A 2.7V 900MHz CMOS LNA and mixer,” ISSCC Dig. Tech. Papers, 1996, vol. 39, pp. 50-51.
[24] J. Craninckx, and M. Steyaert, “Low-Noise Voltage-Controlled Oscillators Using Enhanced LC-Tanks,” IEEE Transactions on circuits and systems-II: Analog and Digital Signal Processing, vol. 42, pp. 794-804, December 1995.
[25] A. Hajimiri, and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999.
[26] Behzad Razavi, “A Study of Phase Noise in CMOS Oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, March 1996.
[27] A. Hajimiri, and T. H. Lee, “Comments on Design Issues in CMOS Differential LC Oscillators,” IEEE Transactions on Solid-State Circuits, vol. 35, pp. 286-287, February 2000.
[28] Jan Craninckx and Michel S. J. Steyaert, “A 1.8-GHz CMOS Low-Phase-Noise Voltage-Controlled Oscillator with Prescaler,” IEEE J. Solid-State Circuits, vol. 30, pp. 1474-1482, December 1995.
[29] Ali Hajimiri and Thomas H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, February 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top