跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/22 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許漢龍
研究生(外文):Han-Lung Hsu
論文名稱:針對非線性離散時間具匹配擾動之強健控制器設計
論文名稱(外文):ROBUST CONTROLLERS DESIGN FOR NONLINEAR DISCRETE-TIME SYSTEM WITH MATCHING PERTURBATIONS
指導教授:江江盛
指導教授(外文):Chiang-Cheng Chiang
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:55
中文關鍵詞:離散時間匹配擾動強健控制滑動控制非線性
外文關鍵詞:Discrete-timeMatching perturbationsRobust controlSliding modeNonlinear
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是針對具匹配擾動之單一輸入單一輸出(SISO)非線性離散時間系統,提出2 種控制器設計。首先,在第2 章提出的強健控制器是由傳統狀態回授控制器內再加上單位向量控制型式(univector-control form)來處理不確定項.在本報告中,選擇匹配擾動當作不確定項的主要原因就是為了利用它的匹配條件特性,藉此單位向量控制型式才能發揮它的功用。
接著,在第3章部分我們針對同樣的系統,提出另一種控制器-滑動模式控制器。它的特色就是抖動的現象不會發生,而且擾動的上界也不需知道.不過擾動必須是有界的。有別於一般的滑動模式控制器,本控制器是在一個小範圍內切換的,而不是在滑動面上切.最後,對於所得到的理論結果,於每章節的最後以電腦模擬來驗證其可行性。

In this thesis, two controllers designed for the single-input single-output nonlinear discrete-time with matching perturbations are provided. First, the robust controller is composed of conventional state-feedback controller and univector-control from to deal with uncertainties. The major reason of choosing matching perturbations for uncertainties is to employ the properties of matching conditions. Then univector-control from can skill its utility by means of the reason. Next, for the same system, we provide another controller, sliding mode controller. The property of our proposed controller is that neither chattering phenomenon will occur nor the knowledge of upper bound of perturbations is required. But the perturbations must have bounded. Not like ordinary sliding mode controller, it switches in a small range but not sliding surface. Finally, some examples and simulation results are provided to illustrate the feasible the feasible of the proposed method.

ABSTRACT (CHINESE) I
ABSTRACT (ENGLISH) ⅡACKNOWEDGEMENT(IN CHINESE) ⅢCONTENTS ⅣLIST OF FIGURES Ⅴ
CHAPTER 1INTRODUCTION 1
1.1Discrete-time control system 1
1.2The nonlinear system with uncertainties 2
1.3Robust controller and sliding mode controller 3
1.4The organization of the report 4
CHAPTER 2ROBUST CONTROLLER DESIGN FOR NONLINEAR DISCRETE-TIME SYSTEM WITH MATCHING PERTURBATIONS 5
2.1Introduction 5
2.2Problem Formulation 6
2.3Design of control 12
2.4Robust properties of discrete-time matching perturbations system 12
2.4.1Discrete-time system with matching perturbations 14
2.4.2Illustrative example and simulation result 14
CHAPTER 3SLIDING MODE CONTROLLER DESIGN FOR NONLINEAR DISCRETE-TIME SYSTEM WITH MATCHING PERTURBATIONS 23
3.1Introduction 23
3.2Problem Formulation 24
3.3Design of control 28
3.4Illustrative example and simulation result 33
CHAPTER 4SIMULATION RESULTS 41
CHAPTER 5CONCLUSIONS 53
REFERENCES 54

[1]C. Y. Chen, “Servo-Systems with Discrete Variable-Structure Control,” System & Control Letters 17, pp. 321-325, October 1991.
[2]K. Furuta, “Sliding Mode Control of Discrete System,” System & Control Letters 14, pp. 145-152, February 1990.
[3]H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems. Springer-Verlag, New York, 1990.
[4]J.-J.E. Slotine and W.Li, Applied Nonlinear Dynamical Control. Prentice-Hall, Englewood Cliffs, 1991.
[5]S. R. Hebertt, “Non-linear Discrete Variable Structure Systems in Quasi-SlidingMode,” INT. J. of Contr., vol.54, no. 5, pp. 1171-1187, 1991.
[6]B. Drazenovic, "The Invariance Conditions in Variable Structure Systems," Automatica, vol. 5, pp. 287-295, 1969.
[7] V. I. Utkin, "Variable Structure Systems with Sliding Modes," IEEE Trans. on AC, vol. AC-22, No. 2, pp.212-222, Apri. 1977.
[8]G. Bartolini and T. Zolezzi, "Variable Structure Systems Nonlinear in The Control Law," IEEE Trans. on AC, vol. AC-30, No. 7, pp.681-684, July 1985.
[9]G. Ambrosino, G. Celentano, and F. Garofalo, "Robust Model Tracking Control for A Class of Nonlinear Plants," IEEE Trans. on AC, vol. AC-30, No. 3, pp.275-279, March1985.
[10]H. Khurana, S. I. Ahson, and S. S. Lamba, "On Stabilization of Large-Scale Control Systems Using Variable Structure Systems Theory," IEEE Trans. on AC, vol. AC-31, No. 2, pp.176-178, February 1986.
[11]S. R. Hebertt, "Nonlinear Variable Structure Systems in Sliding Mode: The General Case," IEEE Trans. on AC, vol. 34, No. 11, pp.1186-1188, November 1989.
[12]S. V. Drakunov and V. I. Utkin, "Sliding Mode Control in Dynamic Systems," INT. J. of Control, vol. 55, No. 4, pp.1029-1037, April 1992.
[13]F. Zhou and D. G. Fisher, "Continuous Sliding Mode Control," INT. J. of Control, vol. 55, No. 2, pp.313-327, February 1992.
[14]S. R. Hebertt, "Sliding Regimes in General Non-Linear Systems: A Relative Degree Approach," INT. J. of Control, vol. 50, No. 4, pp.1487-1506, April 1989.
[15] Y. H. Chen and G. Lietmann, "Robustness of Uncertain Systems in the Absence of Matching Assumptions," INT. J. of Control, vol. 45, No. 5, pp.1527-1542, May 1987.
[16] M. J. Corless and G. Lietmann, “Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems,” IEEE trans. on AC, vol. AC-26, No. 5, pp.1139-1144, October 1981.
[17] B. R. Barmish and G. Lietmann, “On Ultimate Boundedness Contol of Uncertain Systems in the Absence of Matching Assumptions,” IEEE trans. on AC, vol. AC-27, No. 1, pp.153-158, February 1982.
[18] Y. H. Chen, “On the Robustness of Mismatched Uncertain Dynamic Systems,” ASME J. of Dynamic Systems, Measurement, and Control, vol. 109, pp.29-35, March 1987.
[19] Y. H. Chen and G. Lietmann, “Robustness of Uncertain Systems in the Absence of Matching Assumptions,” INT. J. of Control, vol. 45, No. 5,pp.1527-1542, May 1987.
[20] H.Seraji, “Simple method for model referance adaptive control,” INT. J. of Contr., vol. 49, no. 1, pp.367-371, 1989.
[21]A. Isidori, Nonlinear control systems: an introduction, Springer-Verlag, New York,1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊