# 臺灣博碩士論文加值系統

(18.232.177.219) 您好！臺灣時間：2022/06/25 22:00

:::

### 詳目顯示

:

• 被引用:0
• 點閱:183
• 評分:
• 下載:0
• 書目收藏:0
 本篇論文針對工業機器手臂之軌跡規劃，提出平面上最短路徑且平滑之軌跡的演算法。本演算法首先利用橢圓罩住障礙物，找出在平面上之歐基里德最短路徑，此最短路徑必須避開障礙物，接著藉由限制關節(joint)的力矩與力矩改變率(Torque rate)，使得機器手臂在沿著此最短路徑工作時，能保持平滑的軌跡。由本篇論文所找出的歐基里德最短路徑，我們可以確保在有障礙物的情況下，機器手臂沿著此路徑所行進的距離總和為最短。在找到此最短路徑之後，為了要確保機器手臂能快速且平滑的沿著此一路徑執行指定工作，我們加入了兩個限制的條件，亦即是限制每一個關節的力矩與力矩改變率。為了要確保軌跡的平滑，機器手臂在執行工作中可能要犧牲一點時間。最後我們可以得到在有障礙物的環境下要達到最短路徑與軌跡平滑所需的工作時間。本篇論文最後將此演算法運用在SCORBOT ER VII機器手臂及NONHOLONOMIC MOBILE ROBOT的軌跡追蹤以彰顯本論文在此方面的成果。
 In this thesis, we proposed an algorithm about the smooth trajectory planning for industrial manipulators along the shortest path with obstacles in the plane. First, an Euclidean shortest path, avoiding obstacles which were well covered by ellipses, was found by our algorithms. A smooth trajectory could be kept by limiting the torque and torque rate of the joints when the manipulator worked along the shortest path. From the Euclidean shortest path, determined by the thesis, we can be sure that the summation of distances is smallest for manipulators working along the Euclidean shortest path. After finding the shortest path, we added two conditions, i.e., the torque and torque rate limits, and a prespecified work could be executed for ensuring that the manipulator could worked quickly and smoothly along the shortest path. For ensuring the smoothness of the trajectory, the manipulator, executing an prespecified work, may spent extra time. Finally, we could get an executing time for the manipulator working smooth along the shortest path with obstacles. The models of the SCORBOT ER VII manipulator and nonholonomic mobile robot are used to illustrate the effectiveness of the proposed algorithm for achieving the tracking purpose.
 CONTENTS ABSTRACT (IN CHINESE) I ABSTRACT (IN ENGLISH) II 1 INTRODUCTION 1 2 PROBLEM FORMULATION 3 3 APPROXIMATE EUCLIDEAN SHORTEST PATHS 5 3.1 The history and our esult . . . . . . . . . . . . . . 5 3.2 Approximate shortest paths . . . . . . . . . . . . . . 6 3.3 Examples . . . . . . . . . . . . . . . . . . . . . . 9 4 SMOOTH PATH-CONSTRAINED TIME OPTIMAL MOTIONS 13 4.1 Path constraints . . . . . . . . . . . . . . . . . . . 13 4.2 Torque limits . . . . . . . . . . . . . . . . . . . 15 4.3 Torque rate limits . . . . . . . . . . . . . . . . . . 16 4.4 Admissible states . . . . . . . . . . . . . . . . . . 18 4.5 System dynamics . . . . . . . . . . . . . . . . . . . 21 4.6 Solution of the SPCTOM . . . . . . . . . . . . . . . . 22 4.6.1 SPCTOM trajectory characteristics . . . . . . . 22 4.6.2 Approximating functions in Robotics . . . . . . 25 4.6.3 Planning method . . . . . . . . . . . . . . . . 26 5 SIMULATIONS 29 5.1 Planning performance . . . . . . . . . . . . . . . . . 29 5.2 Trajectory tracking . . . . . . . . . . . . . . . . . 37 6 CONCLUSIONS 43
 [1] Z. shiller and H.H. Lu, ”Computation of path constrainedtime optimal motions with dynamic singularities,” ASME J.Dynamic Systems, Measurement and Control, vol. 114, pp.34-40, 1992.[2] J.E. Bobrow, S. Dubowsky, and J.S. Gibson, ”Time-optimalcontrol of robotic ma-nipulators along specified paths,”Int. J. Robotics Research, vol. 4, pp. 3-17, 1985.[3] F. Pfeiffer and R. Johanni, ”A concept for manipulatortrajectory planning,” IEEE J. Robotics and Automatation,RA-3, pp. 115-123, 1987.[4] Z. shiller, ”Time-energy optimal control of articulatedsystems with geometric path constraints,” IEEE Int. Conf.Robotics Automatation, 1994, vol. 4, pp. 2680-2685.[5] C.S. Lin, P.R. Chang, and J.Y.S. Luh, ”Formulation andOptimization of Cubic Poly-nomial Joint Trajectories forIndustrial Robots,” IEEE Trans. Automatic Control,AC-28(12), pp. 1066-1074, 1983.[6] D. Constantinescu, and E.A. Croft, ”Smooth and time-optimal trajectory planning for industrial manipulatorsalong specified paths,” J. Robotic Systems, vol. 17(5),pp. 233-249, 2000.[7] K.G. Shin and N.D. McKay, ”A dynamic programming approachto trajectory plan-ning of robotic manipulators,” IEEETrans. Automatic Control, AC-31, pp. 491-500, 1986.[8] H.G. Bock and K.-J. Plitt, ”A multiple shooting algorithmfor direct solution of optimal control problems,” in 9thFAC World Congress, 1984, pp. 1853-1858.[9] G. Leitman, The calculus of variations and optimal control,New York and London: Plenum Press, 1981.[10] Y.-H. Chang, T.-T. Lee, and C.-H. Liu, ”On-LineApproximate Cartesian Path Tra-jectory Planning forRobotic Manipulators,” IEEE Trans. Systems, Man, andCybernetics, vol. 22(3) pp. 542-547, May/June 1992.[11] E.A. Croft, B. Benhabib, and R.G. Fenton, ”Near-TimeOptimal Robot Motion Planning for On-line Applications,”J. Robotic Systems, vol.12(8), pp. 553-567, 1995.[12] M. Hoffman, A. Malowany, and J. Angeles, ”Near-Minimum-Time Trajectories for Pick-and-Place Operations,” in ASMEInt. Conf. Computers in Engineering, San Francisco,California, August, 1988, pp. 433-438.[13] Z. Shiller, ”Interactive Time-Optimal Robot MotionPlanning and Work-Cell Layout Design,” in IEEE Int. Conf.Robotics and Automation, Phoenix, Arizona, May, 1989,pp. 964-969.[14] Carl de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.[15] J.E. Bobrow, ”Optimal Robot Path Planning using Minimum-Time Criterion,” IEEE Trans. Robotics and Automation,vol.4, pp. 443-450, 1988.[16] B.J. Martin and J.E. Bobrow, ”Determination of Minimum-Effort Motions for Gen-eral Open Chains,” in IEEE Int.Conf. Robotics and Automation, Piscataway, New Jersey,1995, pp. 1160-1165.[17] R. Fierro and F.L. Lewis, ”Control of a nonholonomicmobile robot: Backstepping kinematics into dynamics,” in34th Proc. IEEE Conf. Decision and Control, New Orleans,LA, December, 1995, pp. 3805-3810.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 並聯機構機械人之阻抗遞迴學習控制法則的設計 2 使用遺傳學習演算法設計具有有限字元長度之最佳控制器 3 具動力回饋人機界面設計及分析並且於虛擬實境暨遠端操控系統之應用 4 六足機器人之視覺伺服軌跡追蹤與避障 5 輪型機器人之影像避障及追蹤控制 6 使用Kinect 感測器實現模擬媒體播放器 7 基於觀測器之適應模糊輸出迴授控制對雙足機器人的控制 8 針對不確定非線性廣義系統之觀察模糊追蹤控制器設計 9 針對有限字元長度實現下經由正交何米遜轉換的一種改良式最佳線性二次高斯控制器設計 10 具有未知輸出延遲的多輸入多輸出非線性系統之類神經適應控制 11 電力輸配電系統具發電機組故障及匹配未定性之適應追蹤控制 12 具有多個時間延遲之非線性系統的適應追蹤控制 13 閉迴路線性多輸入多輸出隨機系統之間接極點位移控制法則 14 二維多負載結構之多目標外形最佳化設計：排序遺傳演算法之應用 15 逆向熱流分析法應用於形狀辨識與形狀設計

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室