(44.192.112.123) 您好!臺灣時間:2021/03/08 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳曜仙
研究生(外文):Yao-Hsien Wu
論文名稱:應用複頻技術之FIR數位濾波器設計
論文名稱(外文):DESIGN OF FIR DIGITAL FILTERS BY USING MULTIRATE TECHNIQUES
指導教授:劉皆成
指導教授(外文):Prof. Jie-Cherng Liu
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:61
中文關鍵詞:多相位複頻訊號處理餘弦調變濾波器庫內插有限脈衝響應
外文關鍵詞:polyphasemultirate signal processingcosine modulated filter banksinterpolated FIR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
在先進的通訊系統中FIR數位濾波器是基本且不可或缺的!而使用複頻訊號處理技巧可以更加有效率地設計這些濾波器。在本論文中,我們利用IFIR的方法設計了一系列FIR數位濾波器。同時我們也使用了Kaiser window方法以及Nyquist濾波器的概念來設計cosine-modulated filter banks的prototype濾波器。這些技術能夠大幅地減少運算複雜度和濾波器的成本,並且在設計過程中提供較高效率。

The FIR digital filters are essential and indispensable in the progressive communication systems. The design of these filters by using multirate signal processing techniques is much more advantageous and efficient. In this thesis we take advantage of the IFIR method to design a series of FIR digital filters. The ideas of the Kaiser window approach and the Nyquist filter are used for the design of prototype filters of cosine modulated filter banks. They can greatly reduce the computational complexity and the cost of the filters, and can provide higher efficiency in the designing procedure.

ABSTRACT (in Chinese)
ABSTRACT (in English)
ACKNOWLEDGEMENT
CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1 INTRODUCTION
CHAPTER 2 MULTIRATE SYSTEM FUNDAMENTALS
2.1 Introduction
2.2 Fundamental Operations of Multirate Systems
2.2.1 Decimation and interpolation
2.2.2 Transform domain analysis of decimators and expanders
2.2.3 Decimation filter and interpolation filter
2.3 Useful Interconnections in Multirate Systems
2.3.1 Decimator and expander cascades
2.3.2 Fractional sampling rate alteration
2.3.3 Noble identities
2.4 polyphase
2.4.1 Efficient structures for decimation and interpolation filters
2.4.1.1 Decimation filters
2.4.1.2 Interpolation filters
CHAPTER 3 INTERPOLATED FIR (IFIR) FILTERS DESIGN
3.1 Introduction
3.2 Multistage Implementations
3.3 The Interpolated FIR (IFIR) Approach
3.3.1 Basic idea of interpolated FIR (IFIR) filters
3.3.2 Some important properties of IFIR
3.3.2.1 Adjusting ripple sizes
3.3.2.2 Terminologies of IFIR filters
3.3.2.3 Some points for attention in the IFIR approach
3.4 Multistage Design of Decimation and Interpolation Filters
3.4.1 Multistage design of decimation filters
3.4.2 Design of multistage decimation filters
3.4.2.1 Method I of designing multistage decimation filter
3.4.2.2 Method II of designing multistage decimation filter
3.5 Design of IFIR High-Pass and Band-Pass Filters
3.5.1 Design of IFIR highpass filters
3.5.2 Design of IFIR bandpass filters
3.5.3 IFIR wideband filter designs
CHAPTER 4 M-CHANNEL COSINE-MODULATED FILTER BANKS DESIGN
4.1 Digital Filter Bank Fundamentals
4.2 M-Channel Maximally Decimated Filter Bank
4.2.1 Basic M-channel maximally decimated filter bank
4.2.2 General M-channel polyphase filter banks
4.3 Cosine-Modulated Filter Banks
4.3.1 Structure of the cosine-modulated filter bank
4.3.2 Compensation of the alias components
4.3.3 Design of the prototype filter
4.3.3.1 Review of prototype designs using the Parks-McClellen algorithm
4.3.3.2 Prototype filter design using Kaiser window approach
4.3.3.3 Define a objective function
4.3.3.4 Design and simulation results of cosine-modulated filter banks
CHAPTER 5 CONCLUSIONS
REFERENCES

[1] R.E. Crochioere and L.R. Rabinar, Multirate Digital Signal Processing. Englewood Cliffs, Prentice Hall, 1983.
[2] P.P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[3] M. Vetterli, “A theory of multirate filter banks,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 356-372, Mar. 1987.
[4] P.P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial,” Proc. of the IEEE, vol. 78, NO.1, pp.56-93, Jan. 1990.
[5] Sanjit K. Mitra, Digiatl Signal Processing: A Computer-Based Approach, Second Edition. McGRAW-HILL International Edition, 2001.
[6] G. Strang snd T. Nguyen, Wavelets and Filter Banks. MA: Wellesley-Cambridge, 1996.
[7] N. J. Fliege, Multirate Digital Signal Processing. John Wiley & Sons Ltd. 1994.
[8] R. Ramachandran and P. Kapal, “Bandwidth efficient transmultiplexers part 1: Synthesis,” IEEE Trans. Signal Processing, vol 40, pp. 70-84, Jan 1992.
[9] Meyer, R. A., and Burrus, C. S. “A unified anlaysis of multirarte and periodically time varying digital filters,” IEEE Trans. on Circuits and Systems, vol. CAS-22, pp.162-168, Mar. 1975.
[10] T. Chen, P.P. Vaidyanathan, “Recent developments in multidimensional multirate syst ems,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 3, pp. 116-137, Apr. 1993.
[11] R.W. Schafer and L.R. Rabiner, “A digital signal processing approach to interpolation,” Proc. IEEE, vol. 61, no. 6, pp. 692-702, June 1973.
[12] Neuvo Y., Dong C.-Y., and Mitra, S. K. “Interpolated finite impulse response filters,” IEEE Trans. on Acoust. Speech and Signal Proc., vol. ASSP-32, pp.563-570, June 1984.
[13] Don Orofino, Paul Pacheco, “Multirate Multistage Filtering,” Matlab News and Notes, The MathWorks Home.
[14] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989.
[15] Jennifer L. H. Webb, David C. Munson, “A new approach to designing computationally efficient interpolated FIR filters,” IEEE Trans. on Signal Processing, vol. 44, pp.1923-1931, Aug. 1996.
[16] S. J. Jou, S. Y. Wu and C. K. Wang, “Low-power multirate architecture for IF digital frequency down converter,” IEEE Trans. on Circuits and Systems, vol. 45, pp. 1487-1494, Nov. 1998.
[17] H. J. Nussbaumer, “Pseudo QMF filter bank,” IBM Tech. Disclosure Bull., vol. 24, pp. 3081-3087, Nov. 1981.
[18] J. H. Rothweiler, “Polyphase quadrature filters — a new subband codding technique,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Boston, MA, pp. 1280-1283, Apr. 1983.
[19] C. D. Creusere and S. K. Mitra, “A simple method for designing high-quality prototype filters for M-band pseudo QMF banks,” IEEE Trans. Signal Processing, vol. 43, pp. 1005-1007, Apr. 1994.
[20] M. A. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs, NJ: Prentice-Hall, 1995.
[21] Y. P. Lin, P. P. Vaidyanathan, “Application of DFT filter banks and cosine modulated filter banks,” IEEE Asia-Pacific Conference, pp. 254 —259, 1994.
[22] T. Q. Nguyen, “Near-perfect-reconstruction pseudo-QMF banks,” IEEE Trans. on Signal Processing, vol. 42, pp. 65-76, Jan. 1994.
[23] E. Abdel-Raheem, F. El-Guibaly, and A. Antoniou, “Efficient design of cosine-modulated filter banks,” Procedings., IEEE Pacific Rim Conference on, pp. 387-390, 1995.
[24] Yuan-Pei Lin, P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype of cosine modulated filterbanks” IEEE Signal Processing Letters, vol. 56, pp. 132-134, Jun 1998.
afsdf
afsedfsa

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔