|
[1] R.E. Crochioere and L.R. Rabinar, Multirate Digital Signal Processing. Englewood Cliffs, Prentice Hall, 1983. [2] P.P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993. [3] M. Vetterli, “A theory of multirate filter banks,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 356-372, Mar. 1987. [4] P.P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial,” Proc. of the IEEE, vol. 78, NO.1, pp.56-93, Jan. 1990. [5] Sanjit K. Mitra, Digiatl Signal Processing: A Computer-Based Approach, Second Edition. McGRAW-HILL International Edition, 2001. [6] G. Strang snd T. Nguyen, Wavelets and Filter Banks. MA: Wellesley-Cambridge, 1996. [7] N. J. Fliege, Multirate Digital Signal Processing. John Wiley & Sons Ltd. 1994. [8] R. Ramachandran and P. Kapal, “Bandwidth efficient transmultiplexers part 1: Synthesis,” IEEE Trans. Signal Processing, vol 40, pp. 70-84, Jan 1992. [9] Meyer, R. A., and Burrus, C. S. “A unified anlaysis of multirarte and periodically time varying digital filters,” IEEE Trans. on Circuits and Systems, vol. CAS-22, pp.162-168, Mar. 1975. [10] T. Chen, P.P. Vaidyanathan, “Recent developments in multidimensional multirate syst ems,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 3, pp. 116-137, Apr. 1993. [11] R.W. Schafer and L.R. Rabiner, “A digital signal processing approach to interpolation,” Proc. IEEE, vol. 61, no. 6, pp. 692-702, June 1973. [12] Neuvo Y., Dong C.-Y., and Mitra, S. K. “Interpolated finite impulse response filters,” IEEE Trans. on Acoust. Speech and Signal Proc., vol. ASSP-32, pp.563-570, June 1984. [13] Don Orofino, Paul Pacheco, “Multirate Multistage Filtering,” Matlab News and Notes, The MathWorks Home. [14] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989. [15] Jennifer L. H. Webb, David C. Munson, “A new approach to designing computationally efficient interpolated FIR filters,” IEEE Trans. on Signal Processing, vol. 44, pp.1923-1931, Aug. 1996. [16] S. J. Jou, S. Y. Wu and C. K. Wang, “Low-power multirate architecture for IF digital frequency down converter,” IEEE Trans. on Circuits and Systems, vol. 45, pp. 1487-1494, Nov. 1998. [17] H. J. Nussbaumer, “Pseudo QMF filter bank,” IBM Tech. Disclosure Bull., vol. 24, pp. 3081-3087, Nov. 1981. [18] J. H. Rothweiler, “Polyphase quadrature filters — a new subband codding technique,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Boston, MA, pp. 1280-1283, Apr. 1983. [19] C. D. Creusere and S. K. Mitra, “A simple method for designing high-quality prototype filters for M-band pseudo QMF banks,” IEEE Trans. Signal Processing, vol. 43, pp. 1005-1007, Apr. 1994. [20] M. A. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs, NJ: Prentice-Hall, 1995. [21] Y. P. Lin, P. P. Vaidyanathan, “Application of DFT filter banks and cosine modulated filter banks,” IEEE Asia-Pacific Conference, pp. 254 —259, 1994. [22] T. Q. Nguyen, “Near-perfect-reconstruction pseudo-QMF banks,” IEEE Trans. on Signal Processing, vol. 42, pp. 65-76, Jan. 1994. [23] E. Abdel-Raheem, F. El-Guibaly, and A. Antoniou, “Efficient design of cosine-modulated filter banks,” Procedings., IEEE Pacific Rim Conference on, pp. 387-390, 1995. [24] Yuan-Pei Lin, P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype of cosine modulated filterbanks” IEEE Signal Processing Letters, vol. 56, pp. 132-134, Jun 1998. afsdf afsedfsa
|