跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/23 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴雯玲
研究生(外文):Wen-Lin Lai
論文名稱:AlcaligenesfaecalisDA1D-胺基醯化酵素之定位突變與基因結構研究
論文名稱(外文):Characterization of functional residues and mapping gene structure of D-aminoacylase from Alcaligenes faecalis DA1
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:定位突變D-胺基醯化酵素基因結構
外文關鍵詞:site-directed mutagenesisD-aminoacylasegene structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Alcaligenes faecalis DA1是本實驗室自土壤中篩選所得,為一能生產高活性N-acyl-D-amidohydrolase之菌株,簡稱D-aminoacylase。分子量約為52 kDa,每一分子內含有2個鋅原子,目前已完成基因選殖及定序,並將基因構築於大量表現載體上。
本論文乃依據先前實驗之化學修飾結果,利用定位突變將Cys97, Cys145, Cys208, Cys309皆改為Ala,並純化各突變酵素,發現C97A酵素完全失去活性,亦失去所結合之2 g.atom之Zn2+,且結構改變,推測C97A參與Zn2+結合,為活性表現及結構穩定所必須。並經由序列比對及反應機制之推測,選擇His221, Asp366及Asp66等殘基,以定位突變法改為Ala,結果酵素活性亦完全失去,證實該三殘基亦和催化活性密切相關。
同時構築A. faecalis之partial genomic library,以選殖D-aminoacylase 之上下游基因,並利用chromosome walking讀出其序列,經由比對發現其上游約30 bp處為ABC peptide transporter基因,下游約85 bp處為一個長636 bp之transcription regulator基因,再向下游約20 bp處為一1.1 kb之一種racemase,這些基因之功能角色及是否形成operon,則尚待證實。

The gene (daa) encoding the D-aminoacylase of Alcaligenes faecalis DA1 has been cloned, sequenced, and expressed. To ascertain the role of cysteine residues in the structure and function of the enzyme, site-directed mutagenesis was performed to change each of the four cysteines to alanine. Mutation of Cys97 to Ala completely abolished enzyme activity. The C97A mutant did not contain the two g..atom of zinc per mole of protein found in the wild-type. The circular dichroism spectropolarimeter indicated a global conformation change of the C97A enzyme. From these studies, Cys97 appears to be important for enzyme activity and seems to contribute to zinc binding and might thus play a substantial role in maintenance of enzyme structural stability. Mutation of His221, Asp366, and Asp66 to Ala also completely abolished enzyme activity, indicated that these three residues might also contribute to zinc binding and enzyme catalysis. Sequence analysis revealed a incomplete ABC peptide transporter gene located at upstream of the daa gene , a helix-turn-helix motif-containing transcription regulator gene (636 bp) and a 1.1 kb racemase gene located downstream of the daa gene. The relationship of these genes is under investigation.

第一章、緒言………………………………………………………1-1
第一節、D型胺基酸的重要性………………………………1-1
第二節、生產胺基酸的方法…………………………………1-3
第三節、D-Aminoacylase之研究現況………………………1-6
第四節、本論文研究之目的與策略…………………………1-8
第二章、材料與方法………………………………………………2-1
第一節、材料…………………………………………………2-1
1. 化學藥品與酵素………………………………………2-1
2. 儀器……………………………………………………2-1
3. 菌種……………………………………………………2-2
4. 培養基及培養液………………………………………2-2
5. 緩衝液與實驗試液……………………………………2-3
6. 質體……………………………………………………2-3
第二節、方法…………………………………………………2-4
1. 自大腸桿菌抽取質體…………………………………2-4
2. 以PCR法進行DNA定位點突變……………………2-5
3. 大腸桿菌之轉形法……………………………………2-6
4. 酵素之生產……………………………………………2-7
5. 酵素粗萃取液之製備…………………………………2-7
6. 酵素活性測定法………………………………………2-7
7. 自大腸桿菌中純化出大量表現的酵素………………2-9
8. 西方墨點法…………………………………………… 2-10
9. 蛋白質含量的測定…………………………………… 2-11
10.圓形二色光譜儀……………………………………… 2-11
11. 以DTNB法測定蛋白質含SH殘基之數目………… 2-11
12. 金屬元素分析…………………………………………2-12
13. A. faecalis DA1 genomic DNA 之抽取………………2-12
14. 核酸探針之製備………………………………………2-13
15. 南方雜交反應…………………………………………2-13
16. 構築Partial genomic DNA library ……………………2-14
17. 選殖菌株之篩選………………………………………2-15
第三章、結果………………………………………………………3-1
第一節、Cysteine對於D-aminoacylase 酵素之角色探討…3-1
1. DA1 D-aminoacylase基因定位點突變………………3-1
2. 酵素動力學之探討……………………………………3-3
3. 酵素之熱安定性………………………………………3-3
4. 利用圓形二色光譜儀預測酵素之二級結構…………3-4
5. 測定蛋白質所含之SH殘基數目………………………3-5
6. 鋅含量分析……………………………………………3-6
第二節、DA1 D-aminoacylase其metal ligands 之推測……3-6
第三節、Catalytic triad之推測………………………………3-8
第四節、D-Aminoacylase基因上下游序列之探討…………3-9
1. Partial genomic library之構築…………………………3-9
2. 上下游基因之定序…………………………………… 3-10
第四章、討論………………………………………………………4-1
第一節、Zinc ligands與zinc角色之探討……………………4-1
1. Zinc對於D-aminoacylase之角色………………………4-1
2. D-Aminoacylase之metal ligands………………………4-5
第二節、Catalytic triad之探討…………………………………4-6
第三節、D-Aminoacylase之上下游基因之探討……………4-7
1. ABC transporter之探討………………………………4-8
2. DNA-binding motif-containing regulator………………4-10
3. Racemase…………………………………………………4-10
4. D-Aminoacylase與其上下游基因關係之推測…………4-11
第五章、參考文獻…………………………………………………5-1

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-402.
Bajusz, S., Szell, E., Bagdy, D., Barabas, E., Horvath, G., Dioszegi, M., Fittler, Z., Szabo, G., Juhasz, A., Tomori, E., and et al. (1990). Highly active and selective anticoagulants: D-Phe-Pro-Arg-H, a free tripeptide aldehyde prone to spontaneous inactivation, and its stable N-methyl derivative, D-MePhe-Pro-Arg-H. J. Med. Chem. 33, 1729-1735.
Baranano, D. E., Ferris, C. D., and Snyder, S. H. (2001). Atypical neural messengers. Trends Neurosci. 24, 99-106.
Bertorelli, A. M., and Czarnowski-Hill, J. V. (1990). Review of present and future use of nonnutritive sweeteners. Diabetes Educ. 16, 415-422.
Blackburn, R. K., and Van Breemen, R. B. (1993). Application of an immobilized digestive enzyme assay to measure chemical and enzymatic hydrolysis of the cyclic peptide antibiotic lysobactin. Drug Metab. Dispos. 21, 573-579.
Bodanszky, M., and Perlman, D. (1969). Peptide antibiotics. Science 163, 352-358.
Chomczynski, P. (1992). One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem. 201, 134-9.
Christianson, D. W., and Cox, J. D. (1999). Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Annu. Rev. Biochem. 68, 33-57.
Crueger, W., and Crueger, A. (1984). Biotechnology: A textbook of industrial microbiology: Science Tech, Inc.
Eichler, K., Schunck, W. H., Kleber, H. P., and Mandrand-Berthelot, M. A. (1994). Cloning, nucleotide sequence, and expression of the Escherichia coli gene encoding carnitine dehydratase. J. Bacteriol. 176, 2970-5
Fath, M. J., and Kolter, R. (1993). ABC transporters: bacterial exporters. Microbiol. Rev. 57, 995-1017.
Feinberg, A. P., and Vogelstein, B. (1984). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266-267.
Fukagawa, Y., Kubo, K., Ishikura, T., and Kouno, K. (1980). Deacetylation of PS-5, a new beta-lactam compound, I. Microbial deacetylation of PS-5. J. Antibiot. 33, 543-549.
Galkin, A., Kulakova, L., Yoshimura, T., Soda, K., and Esaki, N. (1997). Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes. Appl. Environ. Microbiol. 63, 4651-4656.
Higuchi, R., Krummel, B., and Saiki, R. K. (1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351-7367.
Holland, I. B., and Blight, M. A. (1999). ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 293, 381-399.
Holm, L., and Sander, C. (1997). An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28, 72-82.
Hwang, K. Y., Cho, C. S., Kim, S. S., Sung, H. C., Yu, Y. G., and Cho, Y. (1999). Structure and mechanism of glutamate racemase from Aquifex pyrophilus. Nat. Struct. Biol. 6, 422-426.
Kimura, Y., and Kameda, Y. (1957). Occurrence of D-acylase in soil bacterial. Nature 26, 1225.
Kleinkauf, H., and von Dohren, H. (1990). Nonribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem. 192, 1-15.
Kleinkauf, H., Dittmann, J., and Lawen, A. (1991). Cell-free biosynthesis of cyclosporin A and analogues. Biomed.Biochim. Acta. 50, S219-224.
Kreil, G. (1994). Peptides containing a D-amino acid from frogs and molluscs. J. Biol. Chem. 269, 10967-70.
Kreil, G. (1997). D-amino acids in animal peptides. Annu. Rev. Biochem. 66, 337-345.
Kubo, K., Ishikura, T., and Fukagawa, Y. (1980). Deacetylation of PS-5, a new beta-lactam compound. II. Separation and purification of L- and D-amino acid acylases from Pseudomonas sp. 1158. J. Antibiot. 33, 550-555.
Laemmli, U. K. (1970). Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
Mor, A., Amiche, M., and Nicolas, P. (1992). Enter a new post-translational modification: D-amino acids in gene-encoded peptides. Trends Biochem. Sci. 17, 481-485.
Moriguchi, M., and Ideta, K. (1988). Production of D-aminoacylase from Alcaligenes denitrificans subsp. xylosoxydans MI-4. Appl. Environ. Microbiol. 54, 2767-2770.
Moriguchi, M., Sakai, K., Miyamoto, Y., and Wakayama, M. (1993). Production, purification, and characterization of D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. Biosci. Biotechnol. Biochem. 57, 1149-1152.
Moriguchi, M., Sakai, K., Katsuno, Y., Maki, T., and Wakayama, M. (1993). Purification and characterization of novel N-acyl-D-aspartate amidohydrolase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. Biosci. Biotechnol. Biochem. 57, 1145-1148.
Muniz-Lozano, F. E., Dominguez-Sanchez, G., Diaz-Viveros, Y., and Barradas-Dermitz, D. M. (1998). D-Aminoacylase from a novel producer: Stenotrophomonas maltophilia ITV-0595. J. Indust. Microbiol. Biotechnol. 21, 296-299.
Nagasawa, T., and Yamada, H. (1986). Enzymatic transformations of 3-chloroalanine into useful amino acids. Appl. Biochem. Biotechnol. 13, 147-165.
Nagasawa, T., Ishii, T., and Yamada, H. (1988). Physiological comparison of D-cysteine desulfhydrase of Escherichia coli with 3-chloro-D-alanine dehydrochlorinase of Pseudomonas putida CR 1-1. Arch. Microbiol. 149, 413-416.
O'Sullivan, J., McCullough, J. E., Tymiak, A. A., Kirsch, D. R., Trejo, W. H., and Principe, P. A. (1988). Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J.Antibiot. 41, 1740-1744.
Reichel, C., Brugger, R., Bang, H., Geisslinger, G., and Brune, K. (1997). Molecular cloning and expression of a 2-arylpropionyl-coenzyme A epimerase: a key enzyme in the inversion metabolism of ibuprofen. Mol. Pharmacol. 51, 576-82.
Riddles, P. W., Blakeley, R. L., and Zerner, B. (1983). Reassessment of Ellman's reagent. Methods Enzymol. 91, 49-60.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning: A Laboratory Manual (Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory Press).
Schneider, E., and Hunke, S. (1998). ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol. Rev. 22, 1-20.
Snyder, S. H., and Kim, P. M. (2000). D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem. Res. 25, 553-560.
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.
Strych, U., Penland, R. L., Jimenez, M., Krause, K. L., and Benedik, M. J. (2001). Characterization of the alanine racemases from two Mycobacteria. FEMS Microbiol. Lett. 196, 93-98.
Sugie, M., and Suzuki, H. (1980). Optical resolution of DL-amino acids with D-aminoacylase of Streptomyces. Agri. Biol. Chem. 44, 1089-1095.
Syldatk, C., May, O., Altenbuchner, J., Mattes, R., and Siemann, M. (1999). Microbial hydantoinases--industrial enzymes from the origin of life? Appl. Microbiol. Biotechnol. 51, 293-309.
Taylor, P. P., Pantaleone, D. P., Senkpeil, R. F., and Fotheringham, I. G. (1998). Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16, 412-418.
Tripathi, C. K., Bihari, V. V., and Tyagi, R. D. (2000). Microbial production of D-amino acids. Process Biochem. 35, 1247-1251.
Tsai, Y. C., Tseng, C. P., Hsiao, K. M., and Chen, L. Y. (1988). Production and purification of D-aminoacylase from Alcaligenes denitrificans and taxonomic study of the strain. Appl. Environ. Microbiol. 54, 984-989.
Tsai, Y. C., Lin, C. S., Tseng, T. H., Lee, H., and Wang, Y. J. (1992). Production and immobilization of D-aminoacylase of Alcaligenes faecalis DA1 for optical resolution of N-acyl-DL-amino acids. Enzyme Microbial. Technol. 14, 384-389.
Umezawa, K., Ikeda, Y., Uchihata, Y., Naganawa, H., and Kondo, S. (2000). Chloptosin, an apoptosis-inducing dimeric cyclohexapeptide produced by Streptomyces. J. Org. Chem. 65, 459-463.
Vallee, B. L., and Auld, D. S. (1990). Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647-59.
Vallee, B. L., and Auld, D. S. (1993). Cocatalytic zinc motifs in enzyme catalysis. Proc. Natl. Acad. Sci. U. S. A. 90, 2715-2718.
Vallee, B. L., and Auld, D. S. (1993). New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry 32, 6493-6500.
Verseck, S., Bommarius, A., and Kula, M. R. (2001). Screening, overexpression and characterization of an N-acylamino acid racemase from Amycolatopsis orientalis subsp. lurida. Appl. Microbiol. Biotechnol. 55, 354-361.
Wakayama, M., Ashika, T., Miyamoto, Y., Yoshikawa, T., Sonoda, Y., Sakai, K., and Moriguchi, M. (1995). Primary structure of N-acyl-D-glutamate amidohydrolase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. J. Biochem. 118, 204-209.
Wakayama, M., Katsuno, Y., Hayashi, S., Miyamoto, Y., Sakai, K., and Moriguchi, M. (1995). Cloning and sequencing of a gene encoding D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 and expression of the gene in Escherichia coli. Biosci. Biotechnol. Biochem. 59, 2115-2119.
Wakayama, M., Watanabe, E., Takenaka, Y., Miyamoto, Y., Tau, Y., Sakai, K., and Moriguchi, M. (1995). Cloning, expression, and nucleotide sequence of the gene of N-acyl-D-aspartate amidohydrolase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. J. Ferment. Bioeng. 80, 311-317.
Wakayama, M., Hayashi, S., Yatsuda, Y., Katsuno, Y., Sakai, K., and Moriguchi, M. (1996). Overproduction of D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 in Escherichia coli and its purification. Protein Expr. Purif. 7, 395-399.
Wakayama, M., Yada, H., Kanda, S., Hayashi, S., Yatsuda, Y., Sakai, K., and Moriguchi, M. (2000). Role of conserved histidine residues in D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. Biosci. Biotechnol. Biochem. 64, 1-8.
White, W. B., Franklund, C. V., Coleman, J. P., and Hylemon, P. B. (1988). Evidence for a multigene family involved in bile acid 7-dehydroxylation in Eubacterium sp. strain VPI 12708. J. Bacteriol. 170, 4555-61.
Yang, J. T., Wu, C. S., and Martinez, H. M. (1986). Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208-269.
Yang, Y. B., Lin, C. S., Tseng, C. P., Wang, Y. J., and Tsai, Y. C. (1991). Purification and characterization of D-aminoacyclase from Alcaligenes faecalis DA1. Appl. Environ. Microbiol. 57, 1259-1260.
Yang, Y. B., Hsiao, K. M., Li, H., Yano, H., Tsugita, A., and Tsai, Y. C. (1992). Characterization of D-aminoacylase from Alcaligenes denitrificans DA181. Biosci. Biotechnol. Biochem. 56, 1392-1395.
Yang, Y. B., Hu, H. L., Chang, M. C., Li, H., and Tsai, Y. C. (1994). Purification and characterization of L-aminoacylase from Alcaligenes denitrificans DA181. Biosci. Biotechnol. Biochem. 58, 204-205.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top