(3.238.186.43) 您好!臺灣時間:2021/03/05 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:汪詩海
研究生(外文):Shih-Hai Wang
論文名稱:脊髓小腦萎縮症致病基因之研究
論文名稱(外文):Disease Gene Hunting: Spinocerebellar Ataxia
指導教授:楊永正楊永正引用關係
指導教授(外文):Ueng-Cheng Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:小腦萎縮症三核苷重複序列生物資訊多型性候選基因
外文關鍵詞:SCAAtaxiatrinucleotide repeatbioinformaticspolymorphismcandidate geneexpansion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:323
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
脊髓小腦萎縮症 (Spinocerebellar ataxia, SCA) 是一種體染色體顯性的遺傳性神經元退化性疾病。此病病人會由於小腦與神經細胞的萎縮、退化產生運動失衡的情形。目前為止SCA已被歸類為十六型,分別由SCA1到SCA16,在這十六型中,有八種屬於基因已被選殖出的類型,六種屬於已定出基因座位置,但基因未被選殖出的類型,另外兩種則僅有分類名稱而其餘資訊一無所知。在基因已選殖出之類型中,SCA的致病機制都是因為核苷酸重複序列出現了異常擴張的情形,其中多數為CAG / CTG的三核苷酸重複序列的擴增。經由遺傳,可令子代異常擴張的情形更為嚴重,造成發病的年齡更為提早。目前已發展出分子檢測的方式,可對基因已選殖出之SCA類型做出診斷,並了解三核苷酸重複序列異常擴張的長度如何。
本論文中針對了SCA4、SCA5、SCA11、SCA13、SCA14這五種僅知基因座位置的SCA類型,先以生物資訊的工具所預測之致病候選基因排定優先順序,再於致病候選基因中三核苷酸重複序列的位置附近設計引子,利用聚合酶連鎖反應以及定序凝膠電泳的方法,在病人的DNA上檢測重複序列的長度。其中SCA4計有20個致病候選基因,在9對優先順序高的引子中發現3個DNA多型性的現象;SCA5計有16個致病候選基因,於7對優先順序高的引子中並無發現任何多型性;SCA11有34個致病候選基因,在20對優先順序高的引子中發現4個DNA多型性的情形;SCA13則有52個致病候選基因,在28對優先順序高的引子中出現了5個DNA多型性的情形;而在SCA14,則是6個致病候選基因以及5對優先順序高的引子中,沒有發現到任何多型性。這結果顯示在現有的73個無法定出類型的SCA病人中,並未發現SCA4, 5, 11, 13, 14等五種SCA的致病基因。經由與Unigene資料庫比對發現這些有重複序列之多型性的候選基因,有75%分別在小腦組織的EST中也有程度不同的表現量,顯示仍值得尋找更多的病患進行測試。此外,其他的三核苷酸重複序列異常擴張之相關疾病,經以BLAST比對人類和其他生物間的疾病基因與蛋白質的序列之後,發現到在其他生物之中並未含有如同人類一般長串的三核苷酸重複序列的現象。這些觀察將可評估已有之各候選基因之優先順序。

Spinocerebellar ataxia (SCA) is an autosomal dominant hereditary neuron disorder disease. Patients with this disease show incoordination of movement because of atrophy of the cerebellum. The SCA has been classified into 16 types so far─ from SCA1 to SCA16. Out of the 16 types, 8 diseases genes have been cloned; however, another 6 have merely been mapped. We know nothing about the SCA9 and SCA15 but the names. The trinucleotide repeat (CAG / CTG) in most of the SCA disease genes expand. When the repeats expand in successive generations, the syndrome become proleptic. Molecular methods have been developed to diagnose the cloned SCA types and to measure the length of trinucleotide repeat expansion.
My thesis has studied 5 SCA types that do not have a disease gene─ SCA4, SCA5, SCA11, SCA13, and SCA14. After setting up the priority of predicted candidate genes, I designed primers near the repeat site of high priority candidate genes. Polymerase chain reaction (PCR) and electrophoresis were used to measure the length of repeats in DNA samples from patients. There were 20 candidate genes in SCA4; 3 out of the 9 high priority set of primers are polymorphic. There are 16 candidate genes in SCA5 and non- polymorphic in 7 set of primers. There are 34 candidate genes in SCA11; 4 out of the 20 set of primers are polymorphic. There are 52 candidate genes in SCA13 and 5 out of the 28 set of primers are polymorphic. There are 6 candidate genes in SCA14 and none of the 5 primers is polymorphic.
These results reveal that no disease genes were found in SCA4, 5, 11, 13, 14 types among the 73 unclassified SCA patients. After searching UniGene database, 75 percent of the polymorphic repeat-containing genes are expressed in different extent in cerebellum. Thus, it is still worth to test these primers set on more patients to hunt for the disease gene. Besides, the trinucleotide repeat length in animals were obviously shorter than that in human beings. This observation will be useful to evaluate the priority of testing candidate genes in the future.
致謝..........................................................I
中文摘要......................................................Ⅱ
英文摘要......................................................Ⅲ
縮寫表........................................................Ⅳ
目錄與圖表目錄.................................................V
一、緒論......................................................1
脊髓小腦萎縮症之簡介...........................................1
SCA的病理、病徵與致病原因......................................2
脊髓小腦萎縮症之分類...........................................3
關於三核苷酸重複序列...........................................4
以生物資訊學的方法對未知的SCA類型疾病蒐集致病候選基因............7
以實驗方式發現已知基因座位置,但基因未選殖出的SCA類型
之疾病基因....................................................7
利用生物資訊學方法分析不同生物中三核苷酸重複序列的相關
疾病基因......................................................8
研究策略總整理................................................9
二、實驗材料與方法............................................10
實驗材料.....................................................10
人類基因體DNA (Human Genomic DNA)............................10
引子.........................................................10
聚合酶.......................................................10
聚合酶連鎖反應試劑............................................10
套裝系統 (Kit)................................................10
其他化學藥品..................................................11
放射性同位素..................................................11
PCR熱循環器...................................................11
實驗方法......................................................11
引子的設計....................................................11
使用Primer3工具網站輔助設計....................................11
聚合酶連鎖反應 (Polymerase chain reaction, PCR)...............14
熱循環參數1...................................................15
熱循環參數2...................................................16
熱循環參數3...................................................16
DNA凝膠電泳...................................................16
Agarose凝膠電泳...............................................16
Polyacrylamide凝膠電泳........................................17
定序凝膠電泳 (sequencing gel).................................17
製作定序用標記 (Sequencing marker)............................18
真空凝膠乾燥..................................................19
自動放射顯影及磷光顯像儀操作...................................19
實驗上利用到的資料庫說明.......................................20
三、結果......................................................22
蒐集致病候選基因的程序及結果...................................22
對致病候選基因設定優先順序的原因................................24
對各致病候選基因測試最佳化PCR條件...............................25
利用PCR方法來篩選病人樣本......................................28
對已知類型的SCA疾病基因用相同的PCR篩選方法當作對照組.............29
篩選後所觀察到的結果...........................................31
出現DNA多型性的致病候選基因介紹.................................34
具有DNA多型性的致病候選基因可以核對到某些基因與蛋白質............34
以生物資訊的方法分析三核苷酸重複序列相關疾病的結果...............37
四、討論......................................................40
實驗結果與對照組的比較.........................................40
實驗設計及實驗方法優缺點的討論..................................40
致病候選基因可能性的探討.......................................42
推測DNA多型性的意義............................................44
對三核苷酸重複序列相關疾病的分析結果討論其意義...................45
後續的展望....................................................46
五、參考文獻..................................................47
附錄..........................................................52

Catasti, P., Chen, X., Mariappan, S. V., Bradbury, E. M., and Gupta, G. (1999). DNA repeats in the human genome. Genetica 106, 15-36.
Chang, J. G., Jong, Y. J., Lin, S. P., Soong, B. W., Tsai, C. H., Yang, T. Y., Chang, C. P., and Wang, W. S. (1997). Molecular analysis of survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes of spinal muscular atrophy patients and their parents. Hum Genet 100, 577-81.
Gaspar, C., Lopes-Cendes, I., Hayes, S., Goto, J., Arvidsson, K., Dias, A., Silveira, I., Maciel, P., Coutinho, P., Lima, M., Zhou, Y. X., Soong, B. W., Watanabe, M., Giunti, P., Stevanin, G., Riess, O., Sasaki, H., Hsieh, M., Nicholson, G. A., Brunt, E., Higgins, J. J., Lauritzen, M., Tranebjaerg, L., Volpini, V., Wood, N., Ranum, L., Tsuji, S., Brice, A., Sequeiros, J., and Rouleau, G. A. (2001). Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet 68, 523-8.
Gastier, J. M., Brody, T., Pulido, J. C., Businga, T., Sunden, S., Hu, X., Maitra, S., Buetow, K. H., Murray, J. C., Sheffield, V. C., Boguski, M., Duyk, G. M., and Hudson, T. J. (1996). Development of a screening set for new (CAG/CTG)n dynamic mutations. Genomics 32, 75-85.
Guy, J., Spalluto, C., McMurray, A., Hearn, T., Crosier, M., Viggiano, L., Miolla, V., Archidiacono, N., Rocchi, M., Scott, C., Lee, P. A., Sulston, J., Rogers, J., Bentley, D., and Jackson, M. S. (2000). Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10q. Hum Mol Genet 9, 2029-42.
Herman-Bert, A., Stevanin, G., Netter, J. C., Rascol, O., Brassat, D., Calvas, P., Camuzat, A., Yuan, Q., Schalling, M., Durr, A., and Brice, A. (2000). Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 67, 229-35.
Hsieh, M., Lin, S. J., Chen, J. F., Lin, H. M., Hsiao, K. M., Li, S. Y., Li, C., and Tsai, C. J. (2000). Identification of the spinocerebellar ataxia type 7 mutation in Taiwan: application of PCR-based Southern blot. J Neurol 247, 623-9.
Hsing, A. W., Gao, Y. T., Wu, G., Wang, X., Deng, J., Chen, Y. L., Sesterhenn, I. A., Mostofi, F. K., Benichou, J., and Chang, C. (2000). Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 60, 5111-6.
Isozumi, K., DeLong, R., Kaplan, J., Hung, W. Y., and Siddique, T. (1997). Exclusion of the expansion of CAG/CTG repeats at thirteen loci on chromosome 12 as a candidate genetic mutation in scapuloperoneal spinal muscular atrophy with anticipation. Hum Genet 99, 701-3.
Jakupciak, J. P., and Wells, R. D. (2000). Gene conversion (recombination) mediates expansions of CTG[middle dot]CAG repeats. J Biol Chem 275, 40003-13.
Koob, M. D., Moseley, M. L., Schut, L. J., Benzow, K. A., Bird, T. D., Day, J. W., and Ranum, L. P. (1999). An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21, 379-84.
Labuda, M., Labuda, D., Miranda, C., Poirier, J., Soong, B. W., Barucha, N. E., and Pandolfo, M. (2000). Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 54, 2322-4.
Lazaruk, K., Wallin, J., Holt, C., Nguyen, T., and Walsh, P. S. (2001). Sequence variation in humans and other primates at six short tandem repeat loci used in forensic identity testing. Forensic Sci Int 119, 1-10.
Margolis, R. L., McInnis, M. G., Rosenblatt, A., and Ross, C. A. (1999). Trinucleotide repeat expansion and neuropsychiatric disease. Arch Gen Psychiatry 56, 1019-31.
Moseley, M. L., Benzow, K. A., Schut, L. J., Bird, T. D., Gomez, C. M., Barkhaus, P. E., Blindauer, K. A., Labuda, M., Pandolfo, M., Koob, M. D., and Ranum, L. P. (1998). Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51, 1666-71.
Nagaoka, U., Takashima, M., Ishikawa, K., Yoshizawa, K., Yoshizawa, T., Ishikawa, M., Yamawaki, T., Shoji, S., and Mizusawa, H. (2000). A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 54, 1971-5.
O'Hearn, E., Holmes, S. E., Calvert, P. C., Ross, C. A., and Margolis, R. L. (2001). SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 56, 299-303.
Petruska, J., Hartenstine, M. J., and Goodman, M. F. (1998). Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J Biol Chem 273, 5204-10.
Pujana, M. A., Gratacos, M., Corral, J., Banchs, I., Sanchez, A., Genis, D., Cervera, C., Volpini, V., and Estivill, X. (1997). Polymorphisms at 13 expressed human sequences containing CAG/CTG repeats and analysis in autosomal dominant cerebellar ataxia (ADCA) patients. Hum Genet 101, 18-21.
Pujana, M. A., Volpini, V., and Estivill, X. (1998). Large CAG/CTG repeat templates produced by PCR, usefulness for the DIRECT method of cloning genes with CAG/CTG repeat expansions. Nucleic Acids Res 26, 1352-3.
Richards, R. I., and Sutherland, G. R. (1997). Dynamic mutation: possible mechanisms and significance in human disease. Trends Biochem Sci 22, 432-6.
Riggins, G. J., Lokey, L. K., Chastain, J. L., Leiner, H. A., Sherman, S. L., Wilkinson, K. D., and Warren, S. T. (1992). Human genes containing polymorphic trinucleotide repeats. Nat Genet 2, 186-91.
Ruitberg, C. M., Reeder, D. J., and Butler, J. M. (2001). STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res 29, 320-2.
Sacchetti, L., Calcagno, G., Coto, I., Tinto, N., Vuttariello, E., and Salvatore, F. (1999). Efficiency of two different nine-loci short tandem repeat systems for DNA typing purposes. Clin Chem 45, 178-83.
Schuler, G. D. (1998). Electronic PCR: bridging the gap between genome mapping and genome sequencing. Trends Biotechnol 16, 456-9.
Silveira, I., Alonso, I., Guimaraes, L., Mendonca, P., Santos, C., Maciel, P., Fidalgo De Matos, J. M., Costa, M., Barbot, C., Tuna, A., Barros, J., Jardim, L., Coutinho, P., and Sequeiros, J. (2000). High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 66, 830-40.
Soong, B., Cheng, C., Liu, R., and Shan, D. (1997). Machado-Joseph disease: clinical, molecular, and metabolic characterization in Chinese kindreds. Ann Neurol 41, 446-52.
Soong, B., Liu, R., Wu, L., Lu, Y., and Lee, H. (2001). Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol 58, 300-4.
Soong, B. W., and Liu, R. S. (1998). Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease. J Neurol Neurosurg Psychiatry 64, 499-504.
Swoboda, K. J., Soong, B., McKenna, C., Brunt, E. R., Litt, M., Bale, J. F., Jr., Ashizawa, T., Bennett, L. B., Bowcock, A. M., Roach, E. S., Gerson, D., Matsuura, T., Heydemann, P. T., Nespeca, M. P., Jankovic, J., Leppert, M., and Ptacek, L. J. (2000). Paroxysmal kinesigenic dyskinesia and infantile convulsions: clinical and linkage studies. Neurology 55, 224-30.
t Hart, L. M., Ruige, J. B., Dekker, J. M., Stehouwer, C. D., Maassen, J. A., and Heine, R. J. (1999). Altered beta-cell characteristics in impaired glucose tolerant carriers of a GAA trinucleotide repeat polymorphism in the frataxin gene. Diabetes 48, 924-6.
Tan, E., and Ashizawa, T. (2001). Genetic testing in spinocerebellar ataxias: defining a clinical role. Arch Neurol 58, 191-5.
Tang, B., Liu, C., Shen, L., Dai, H., Pan, Q., Jing, L., Ouyang, S., and Xia, J. (2000). Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 57, 540-4.
Toth, G., Gaspari, Z., and Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10, 967-81.
van Belkum, A., Scherer, S., van Alphen, L., and Verbrugh, H. (1998). Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62, 275-93.
Wang, V., Yeh, T. P., Chen, C. M., Yan, S. H., and Soong, B. W. (1999). Usefulness of molecular testing in Huntington's disease. Chung Hua I Hsueh Tsa Chih (Taipei) 62, 586-90.
Wanker, E. E. (2000). Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol Chem 381, 937-42.
Yamashita, I., Sasaki, H., Yabe, I., Fukazawa, T., Nogoshi, S., Komeichi, K., Takada, A., Shiraishi, K., Takiyama, Y., Nishizawa, M., Kaneko, J., Tanaka, H., Tsuji, S., and Tashiro, K. (2000). A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 48, 156-63.
Zhu, Y., Strassmann, J. E., and Queller, D. C. (2000). Insertions, substitutions, and the origin of microsatellites. Genet Res 76, 227-36.
Zoghbi, H. Y., and Orr, H. T. (2000). Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23, 217-47.
Zu, L., Figueroa, K. P., Grewal, R., and Pulst, S. M. (1999). Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am J Hum Genet 64, 594-9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔