跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 15:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪君琳
研究生(外文):Jiun-Lin Horng
論文名稱:大白鼠藍斑核神經細胞對於缺氧的敏感度隨週齡改變以及缺氧時一氧化氮的抑制性調節
論文名稱(外文):Age-related changes of sensitivity to hypoxia and the inhibitory modulation of nitric oxide during hypoxia in rat locus coeruleus neurons
指導教授:邱蔡賢邱蔡賢引用關係
指導教授(外文):Tsai-Hsien Chiu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:62
中文關鍵詞:藍斑核缺氧一氧化氮
外文關鍵詞:locus coeruleushypoxianitric oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以離體大白鼠活腦切片作細胞內電生理紀錄,探討不同週齡之大白鼠藍斑核神經細胞對於缺氧敏感度的改變,以及一氧化氮在缺氧時對於藍斑核神經細胞的調節。。
(一) 不同週齡對缺氧敏感度的改變:以95%N2/5%CO2飽和之人工腦脊髓液灌流含藍斑核之腦切片以引發缺氧。結果可以記錄到兩類反應不同的細胞,第一類型神經細胞(typeⅠneuron, n=12, 66.7%)的反應為自發性放電完全被抑制,膜電位呈過極化反應,第二類型細胞(typeⅡneuron, n=6, 33.3%)的反應為細胞膜電位呈現成去極化反應而無過極化現象,若持續地給予缺氧則兩種類型神經細胞之細胞膜皆呈現緩慢去極化的反應。實驗結果顯示,細胞膜靜止膜電位去極化達20mV所需的時間隨週齡的增加而減少(typeⅠneuron:n=5, typeⅡneuron:n=4, p<0.05)。藍斑核神經細胞在未成熟鼠比成熟鼠對於缺氧表現出較大的耐受力。
(二) 缺氧時一氧化氮對藍斑核神經細胞的抑制性調節:缺氧時細胞靜止膜電位去極化達40mV所需時間因iNOS (inducible nitric oxide synthase)的抑制劑aminoguanidine 的給予由控制組的20.2分鐘(typeⅠneuron, n=2)及27.5分鐘(typeⅡneuron, n=3)降低為實驗組的17分鐘(typeⅠneuron, n=3)及16.8分鐘(typeⅡneuron, n=2)(p<0.05),結果顯示缺氧時一氧化氮對藍斑核神經細胞有保護作用。

Age-related changes of sensitivity to hypoxia and inhibitory modulation of nitric oxide during hypoxia in rat locus coeruleus neurons were investigated by intracellular recording from in vitro brain slices.
(1) Age-related changes of sensitivity to hypoxia: In response to a brief exposure to hypoxic medium, equilibrated with 95%N2-5%CO2, two populations of cells could be distinguished, typeⅠneuron(n=12, 66.7%) showing hyperpolarization and cessation of spontaneous action potentials, and typeⅡneurons(n=6, 33.3%) displaying gradual pure depolarization, instead of hypoxic hyperpolarization. With longer exposure to hypoxic solution, both types of neuron showed a gradual depolarization. The results showed that the latencies of resting membrane potential depolarize to a level 20mV more positive than the pre-hypoxic resting potential were decreased with age (typeⅠ:n=5. typeⅡ:n=4, p<0.05). The locus coeruleus neurons in immature rats showed greater resistance to oxygen lack than the older rats.
(2) Inhibitory modulation of nitric oxide during hypoxia: The latencies of resting membrane potential depolarize to a level 40 mV more positive than the pre-hypoxic resting potential were decreased by iNOS(inducible nitric oxide synthase) inhibitor, aminoguanidine, application from 20.2min(typeⅠneuron, n=2) and 27.5min(typeⅡneuron, n=3)under control conditions to 17min(typeⅠneuron, n=3) and 16.8min(typeⅡneuron, n=2) with iNOS inhibitor(p<0.05). These results demonstrate a neuroprotective effect of nitric oxide on locus coeruleus neurons.

一, 前言 P. 5
二, 材料與方法 P. 20
三, 結果 P. 25
四, 討論 P. 29
五, 參考文獻 P. 36
六, 圖 P. 42

Aghajanian, G. K. and Y. Y. Wang. Common α2- and opiate effector mechanisms in the locus coeruleus: intracellular studies in brain slices. Neuropharmacol. 26: 793-799, 1987.
Alici, K., G. Weber-Luxenburger, and U. Heinemann. Effects of glucose deprivation in area CA1 of hippocampal slices from adult and juvenile rats. Brain Res. Dev. Brain Res. 107: 71-80, 1998.
Baker, R. The nucleus prepositus. In: Eye Movements, edted by B, Brooks and F. Bajandas. New York: Plenum press, 1977, p. 145-178.
Ben-Ari, Y. Effects of anoxia and aglycemia on the adult and immature hippocampus. Biol. Neonate. 62: 225-230, 1992.
Bolanos, J.P., and A. Almeida. Roles of nitric oxide in brain hypoxia-ischemia. Biochim. Biophys. Acta 1411: 415-436, 1999,
Carpenter, M. B. and J. Sutin. The Pons. In: Human Neuroanatomy, edited by Williams and Wilkins, Baltimore, 1983, p.358-409.
Cherubini, E., Y. Ben-Ari, and K. Krnjevic. Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. J. Neurophysiol. 62: 882-895, 1989.
Chiu, T. H., Chen, T. Y., Ho, C L., and S. T. Chiang. Electrophysiological effects of dermorphin on locus coeruleus neurones of rat. Neuropharmacology. 29: 747-755, 1990.
Coates, E. L., A. Li, and E. E. Nattie. Widespread sites of brain stem ventilatory chemoreceptors. J. Appl. Physiol. 75: 5-14, 1993.
De Alba, J., A. Cardenas, M. A. Moro, J. C. Leza, P. Lorenzo, and I. Lizasoain. Use of brain slices in the study of pathogenic role of inducible nitric oxide synthase in cerebral ischemia-reperfusion. Gen. Pharmacol. 32: 577-581, 1999.
Ennis, M., G. Aston-Jones, and R. Shiethattar. Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Res. 598: 185-195, 1992.
Fabris, G., A. A. Steiner, J. A. Anselmo-Franci, and L. G. Branco. Role of nitric oxide in rat locus coeruleus in hypoxia-induced hyperventilation and hypothermia. Neuroreport. 11: 2991-2995, 2000.
Fahn, S., J. N. Davis, and L. P. Rowland. Diagnosis, prognosis, and treatment of hypoxic coma. In: Cerebral Hypoxia and Its Consequences. New York : Raven Press, 1979, p.1-19.
Foote, S. L., F. E. Bloom, and G. Aston-Jones. Nucleus locus coeruleus: new evidence of anatomical and physiological speceficity. Physiol. Rev. 63: 844-914, 1983.
Fukuda, A., and D. A. Prince. Postnatal development of electrogenic sodium pump activity in rat hippocampal pyramidal neurons. Brain Res. Dev. Brain Res. 65: 101-114, 1992.
Ganong, W. F. Respiratory adjustments in health and disease. In: Review of Medical Physiology. New Jersey: Prentice Hall International Ltd., 1991, p.632-647.
Gbadegesin, M., S. Vicini, S. J. Hewett, D. A. Wink, M. Espey, R. M. Pluta, and C. A. Colton. Hypoxia modulates nitric oxide-induced regulation of NMDA receptor currents and neuronal cell death. Am. J. Physiol. 277: C673-C683, 1999.
Guyenet, P. G., N. Koshiya, D. Huangfu, A. J. Verberne, and T. A. Riley. Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am. J. Physiol. 264: R1035-1044, 1993.
Guynet, P. G. and B. D. Les. Nucleus paragigantocellularis lateralis and lumbar sympathetic discharge in the rat. Am. J. Physiol. 250: R1981-1994, 1986.
Guyton, A. C., and J. E. Hall. Textbook of medical physiology. Philadelphia: W. B. Saunders, 1996.
Haddad, G. G., and C. Jiang. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol. 40: 277-318, 1993.
Hansen, A. J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65: 101-148, 1985.
Haroda, M., C. Okuda, T. Sawa, and T. Murakami. Cerebral extracellular glucose and lactate concentrations during and after moderate hypoxia in glucose and saline-infused rats. Anesthesiology 77: 728-734, 1992.
Haxhiu, M. A., C. H. Chang, I. A. Dreshaj, B. Erokwu, N. R. Prabhakar, and N. S. Cherniack. Nitric oxide and ventilatory response to hypoxia. Respir. Physiol. 101: 257-266, 1995.
Hu, B. R., C. L. Liu, Y. Ouyang, K. Blomgren, and B. K. Siesjo. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J. Cereb. Blood Flow Metab. 20: 1294-1300, 2000.
Kaehler, S. T., C. Sinner, D. Kouvelas, and A. Philippu. Effects of inescapable shock and conditioned fear on the release of excitatory and inhibitory amino acids in the locus coeruleus. Naunyn Schmiedebergs Arch Pharmacol. 361: 193-199, 2000.
Kass, I. S., and P. Lipton. Protection of hippocampal slices from young rats against anoxic transmission damage is due to better maintenance of ATP. J. Physiol. 413: 1-11, 1989.
Kawai, S., M. Yonetani, H. Nakamura, and Y. Okada. Effects of deprivation of oxygen and glucose on the neural activity and the level of high energy phosphates in the hippocampal slices of immature and adult rat. Brain Res. Dev. Brain Res. 48: 11-18, 1989.
Koyama, S., Y. H. Jin, and N. Akaike. ATP-sensitive and Ca2+-activated K+ channel activities in the rat locus coeruleus neurons during metabolic inhibition. Brain Res. 828: 189-192, 1999.
Krinke, G. K. The laboratory rat San Diego, Calif.; London : Academic, 2000.
Lindvall, O. and A. Bjorklund. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acis fluoresence method. Acta Physiol. Scand. Suppl. 412: 1-48, 1974.
Loughlin, S. E., S. L. Foote, and F. E. Bloom. Efferent projections of nucleus locus coeruleus: topographic organization of cell of origin demostrated by three-dimensional reconstruction. Neuroscience 18: 291-306, 1986.
Masuko, S., Y. Nakajima, and K. Yamaguchi. Noradrenergic neurons form the locus ceruleus in dissociated cell culture: culture methods, morphology, and electrophysiology. J. Neurosci. 6: 3229-3241, 1986.
Mohanakumar, K. P., and H. W. Steinbusch. Hydroxyl radicals and nitric oxide in neurotoxicity and neuroprotection. J. Chem. Neuroanat. 14: 125-7, 1998.
Murai, Y., H. Ishibashi, S. Koyama, and N. Akaike. Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78: 2674-2681, 1997.
Nabetani, M., Y. Okada, S. Kawai, and H. Nakamura. Neural activity and the levels of high energy phosphates during deprivation of oxygen and/or glucose in hippocampal slices of immature and adult rats. Int. J. Dev. Neurosci. 13: 3-12, 1995.
Nishizaki, T., and Y. Okada. Effects of excitatory amino acids on the oxygen consumption of hippocampal slices from the guinea pig. Brain Res. 452: 11-20, 1988.
Saransaari, P., and S. S. Oja. Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus. Neuroscience 79: 847-854, 1997.
Saransaari, P., and S. S. Oja. Release of endogenous glutamate, aspartate, GABA, and taurine from hippocampal slices from adult and developing mice under cell-damaging conditions. Neurochem. Res. 23: 563-570, 1998.
Saransaari, P., and S. S. Oja. Characteristics of ischemia-induced taurine release in the developing mouse hippocampus. Neuroscience 94: 949-954, 1999.
Saransaari, P., and S. S. Oja. Taurine and neural cell damage. Amino Acids 19: 509-526, 2000.
Schreiber, S.J., D. Megow, A. Raupach, I. V. Victorov, and U. Dirnagl. Age-related changes of oxygen free radical production in the rat brain slice after hypoxia: on-line measurement using enhanced chemiluminescence. Brain Res. 703: 227- 230,1995.
Singewald, N., G. Y. Zhou, and C. Schneider. Release of excitatory and inhibitory amino acids from the locus coeruleus of conscious rats by cardiovascular stimuli and various forms of acute stress. Brain Res. 704: 42-50, 1995.
Stocker, S. D., B. C. Jr. Steinbacher, C. D. Balaban, and B. J. Yates. Connections of the caudal ventrolateral medullary reticular formation in the cat brainstem. Exp. Brain Res. 116: 270-282, 1997.
Teppema, L. J., J. G. Veening, A. Kranenburg, A. Dahan, A. Berkenbosch, and C. Olievier. Expression of c-fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J. Comp. Neurol. 388: 169-190, 1997.
Thurston, J. H., and D. B. Jr. McDougal. Effect of ischemia on metabolism of the brain of the newborn mouse. Am. J. Physiol. 216: 348-352, 1969.
Vannucci, RC, and S. J. Vannucci. Glucose metabolism in the developing brain. Semin. Perinatol. 24: 107-115, 2000.
William, J. Y., G. Henderson, and R. A. North. Locus coeruleus neurons. In: Brain Slice, edited by R. Dingledine, New York: Plenum Press, 1984, p. 297-311.
Xia, Y., and G. G. Haddad. Postnatal development of voltage-sensitive Na+ channels in rat brain. J. Comp. Neurol. 345: 279-287, 1994.
Xia, Y., and G. G. Haddad. Effect of prolonged O2 deprivation on Na+ channels: differential regulation in adult versus fetal rat brain. Neuroscience 94: 1231-1243, 1999.
Xu, Z.Q., J. de Vente, H. Steinbusch, S. Grillner, and T. Hokfelt. The NO-cGMP pathway in the rat locus coeruleus: electrophysiological, immunohistochemical and in situ hybridization studies. Eur. J. Neurosci. 10: 3508-3516, 1998.
Yamaguchi, K., M. Tatsuno, and Y. Kiuchi. Maturational change of KCl-induced Ca2+ increase in the rat brain synaptosomes. Brain Dev. 20: 234-238, 1998.
Yang, J. J., Y. C. Chou, M. T. Lin, and T. H. Chiu. Hypoxia-induced differential electrophysiological changes in rat locus coeruleus neurons. Life Sci. 61: 1763-1773, 1997.
Zhang, K., and K. P. Patel. Effect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA. Am. J. Physiol. 275: R728-R734, 1998

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top