(3.231.29.122) 您好!臺灣時間:2021/02/25 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾逸青
研究生(外文):Yi-Ching Tseng
論文名稱:硫蜂斗菜素對大鼠腎上腺皮質固酮分泌之效應
論文名稱(外文):Effect of S-Petasin on Corticosterone Secretion in Male Rats
指導教授:王錫崗王錫崗引用關係
指導教授(外文):Paulus Shyi-Gang Wang, Ph.D.
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:89
中文關鍵詞:硫蜂斗菜素腎上腺皮質固酮
外文關鍵詞:S-Petasincorticosterone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
硫蜂斗菜素是由Petasites hybridus的根或葉萃取出來且具有生物活性的成份。Petasites hybridus在古希臘歷史中常用來治療胃腸道的和氣喘。此植物體及其萃取物應用在治療使用上已約有兩千年的歷史,然而它是否會對身體的內分泌系統造成影響尚未明朗。我們實驗室曾證實硫蜂斗菜素可抑制大鼠睪丸間隙細胞睪固酮的分泌。至於硫蜂斗菜素對於腎上腺功能的影響還不清楚。因此,本研究論文是以雄性大鼠為實驗動物同時以活體及離體方式探討硫蜂斗菜素對雄鼠皮質固酮分泌的效應及作用機制。活體實驗部分,雄鼠自右頸靜脈植入一 PE-50 軟管,並於 20 小時後,靜注生理鹽水、硫蜂斗菜素、腎上腺皮質促素 (adrenocorticotropin;ACTH)、或腎上腺皮質促素合併硫蜂斗菜素,並於靜注後 0、30、60、120、180及240分鐘抽血,每次 0.5 毫升。血樣取得後離心,分出血漿,以放射免疫法檢測皮質固酮及腎上腺皮質促素之濃度。離體實驗部分,取雄鼠腎上腺皮質組織,以 collagenase 酵解,分離束網層細胞,與不同濃度 (10-6~10-4 M) 之硫蜂斗菜素,伴隨ACTH 、8-Br-cAMP (cAMP的類似物)、forskolin (adenylyl cyclase的活化劑) 或類固醇合成前驅物,包括:25-OH-膽固醇 (P450 side-chain cleaveage, P450scc的受質)、pregnenolone (3-hydroxysteroid dehydrogenase, 3-HSD的受質)、助孕酮 (21-hydroxylase的受質) 及deoxycorticosterone (11-hydroxylase的受質) 一齊培養 1 小時。所得培養液以放射免疫測定法分析皮質固酮濃度。為探討硫蜂斗菜素影響皮質固酮的分泌是否與腎上腺束網狀帶中P450scc或steroidogenic acute regulatory protein (StAR protein) 蛋白質的改變有關,另以西方點墨技術 (Western blot analysis) 分析P450scc及StAR之蛋白質表現。所得結果以變方分析處理,若呈顯著,再以丹肯氏多變域異測驗法進行兩組平均值差異顯著分析,部份結果則以學生式t-測驗進行比較。本研究結果顯示(一)硫蜂斗菜素會抑制大鼠血漿皮質固酮的濃度。(二) 硫蜂斗菜素可直接作用在腎上腺束網狀帶細胞抑制皮質固酮的基礎分泌以及由腎上腺皮質促素刺激之皮質固酮分泌。(三) 硫蜂斗菜素透過抑制adenylyl cyclase的活性抑制皮質固酮的分泌。(四) 硫蜂斗菜素抑制皮質固酮生合成過程中P450scc及11β-hydroxylase的活性。(五) 硫蜂斗菜素經由減少StAR protein的蛋白質表現抑制皮質固酮的分泌。綜合所得的結果顯示硫蜂斗菜素抑制皮質固酮的分泌,其作用機轉包括抑制adenylyl cyclase、P450scc及11β-hydroxylase的活性及減少StAR protein的蛋白質表現。

S-petasin is a bioactive compound isolated from leaves or roots of Petasites hybridus (Engl. Butterbur; German Pestwure) which has been used therapeutically for more than 2000 years. It has been reported that the leaf and root extracts of Petasites hybridus relieve gastrointestinal pain, lung-disease such as asthma and cough, as well as spasms of the urogenital-tract. However, their side effects on the endocrine systems are still not clear. It has been demonstrated that s-petasin inhibits the production of testosterone in rat testicular interstitial cells. Wheather s-petasin affects the adrenal function is unknown. The present study was to explore the effects of s-petasin on the secretion of corticosterone both in vivo and in vitro. A single intravenous injection of s-petasin (10g / kg) decreased both basal and adrenocorticotropin (ACTH)-induced plasma corticosterone concentration in male rats. Administration of s-petasin (3x10-6~10-4M) in vitro caused a reduction of basal and ACTH-stimulated release of corticosterone by the enzymatically dispersed rat zona fasciculata-reticularis (ZFR) cells in a dose-dependent manner. S-petasin decreased corticosterone secretion in response to 8-Br-cAMP (a cAMP analogue, 10-6~10-4M) and forskolin (an adenylyl cyclase activator, 10-6~10-4M). Furthermore, we investigate the effect of s-petasin on steroidogenic enzyme activity by incubation of ZFR cells with steroidogenic precursors (e.g. 25-OH-cholesterol, pregnenolone, progesterone, and deoxycorticosterone, 10-7~10-5M each). We found that s-petasin inhibited corticosterone release induced by 25-OH-cholesterol and deoxycorticosterone. After incubation of rat ZFR cells with s-petasin for 4 h, both basal and ACTH-stimulated StAR protein expressions were decreased. However, the protein expression of P450scc was not altered by the administration of s-petasin. These results suggest that s-petasin inhibits the production of corticosterone in rat zona fasciculata-reticularis cells in part through inhibition of cAMP pathway and reduction of StAR protein expression and the activities of P450scc and 11-hydroxylase during steroidogenesis of corticosterone.

誌謝˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙2
重要名詞中英文對照表 ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙3
藥物作用一覽表˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙4
中文摘要˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙5
英文摘要˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙7
第一章、 文獻回顧˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙8
一、 概述˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙9
二、 腎上腺皮質固酮之特性˙˙˙˙˙˙˙˙˙˙˙˙˙˙10
三、 硫蜂斗菜素˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙26
四、 研究目的與假說˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙32
第二章、 激素及生化物質之檢測與分析˙˙˙˙˙˙˙˙˙33
一、皮質固酮 (corticosterone) 之放射免疫測定˙˙˙34
二、妊烯醇酮 (Pregnenolone) 之放射免疫測定˙˙˙˙35
三、西方墨漬分析 (Western Blot)˙˙˙˙˙˙˙˙˙35
第三章、 硫蜂斗菜素對雄鼠皮質固酮分泌的效應˙˙˙˙˙˙39
一、 緒言˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙40
二、 材料與方法˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙41
三、 結果˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙50
四、 討論˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙53
參考文獻˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙57
圖與圖誌˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙67
附錄˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙89

Bartkowski, B. and E. Röder. New color reaction for the qualitative and quantitative determination of otonecine alkaloids, especially senkirkine. Pharm. Acta Helv. 72: 359-380, 1998.
Berger, D., W. Burkard, and W. Schaffner. Influence of Petasites hybridus on dopamine-D2 and histamine-H1 receptors. Pharm. Acta Helv. 72: 359-380, 1998.
Bergeron, J. J. M., R. Rachubinski, N. Searle, D. Borts, R. Sikstrom, and B. I. Posner. Polypeptide hormone receptors in vivo: demonstration of insulin binding to adrenal gland and gastointestinal epithelium by quantitative radioautography. J. Histochem. Cytochem. 28: 824-835, 1980.
Berkenbosch, F. Corticotropin- releasing factor-producing neurons in the rat activated by interleukin-1. Science 238: 524, 1987.
Bickel, D., T. Roder, H. J. Bestmann, and K. Brune. Indentification and characterization of inhibitors of peptido-leukotriene-synthesis from Petasites hybridus. Planta Med. 60: 318-322, 1994.
Bransome, E. D. Jr. Regulation of adrenal growth. Differences in the effects of ACTH in normal and dexmethasone-suppressed guinea-pigs. Endocrinology 83: 956-960, 1968.
Brecher, P., M. Tabacchi, H. Y. Pyun, and A. V. Choanian. Angiotensin binding to rat adrenal capsular cell suspensions. Biochem. Biophys. Res. Commun. 54: 1511-1515, 1973.
Brown, M. S., P. T. Kovanen, and J. L. Goldstein. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Rec. Prog. Horm. Res. 35: 215-257, 1979. New York: Academic Press, Inc.
Brune, K., D. Bickel, and B. A. Peskar. Gastro-protective effects by extracts of Petasites hybridus: the role of inhibition of peptido-leukotriene synthesis. Planta Med. 59: 494-496, 1993.
Buckingham, J. C., K. D. Dohler, and C. A. Wilson. Activity of the pituitary-adrenocortical system and thyroid gland during the oestrous cycle of the rat. J. Endocrinol. 78: 359-366, 1978.
Calogero A. E., R. F. A. Weber, and R. D’agata. Effect of rat prolactin on gonadotropin-releasing hormone secretion by the explanted male rate hypotha-lamus. Neuroendocrinology 57: 152-158, 1993.
Cantin, M., Y. Gutkowska, M. B. Anand-Srivastava, S. Ledoux, C. Bianchi, P. Carriere and J. Genest. Binding and internalization of 125I-angiotensin II in rat adrenal. An ultrastructural radioautographic study. J. Cell. Biochem. 95: 411a, 1982.
Chabot, J. G., J. Guy, J. St-Arnaud, P. Walker, and G. Pelletier. Autoradiographic localization of epidermal growth factor (EGF) receptors in different tissues of the rat. J. Cell. Biolchem. 95: 179a, 1982.
Chang, L. L., M. J. Lo, S. F. Kan, W. J. Huang, J. J. Chen, M. M. Kau, H. Lin, S. C. Tsai, Y. C. Chiao, J. Y. Yeh, W. S. A. Wun, and P. S. Wang. Direct effects of prolactin on corticosterone relesae by zona fasciculata-reticularis cells from male rats. J. Cell. Biochem. 73: 563-572, 1999.
Clark B. J., and D. M. Stocoo. Expression of the steroidogenic acute regulatory (StAR) protein: A novel LH-induced mitochondrial protein required for the acute regulation of steroidogenesis in mouse Leydig tumor cells. Endocr. Res. 21: 243-257, 1995.
Clark, B. J., V. Pezzi, D. M. Stocco, and W. E. Rainey. The steroidogenic acute regulatory protein is induced by angiotensin II and K+ in H295R adrenocortical cells. Mol. Cell. Endocrinol. 115: 215-219, 1995.
Clark, B. J., S. C. Soo, K. M. Caron, Y. Ikeda, K. L. Parker, and D. M. Stocco. Hormonal and developmental regulation of the steroidogenic acute regulatory (StAR) protein. Mol. Endocrinol. 9: 1346-1355, 1995.
Crickard, K., C. R. Ill, and R. B. Jaffe. Control of proliferation of human fetal adrenal cells in vitro. J. Clin. Endocrinol. Metab. 53: 790-796, 1981.
Debrunner, B., and M. Neuensuchwander. Sesquiterpenes of Petasites hybridus (L.) G.M. et Sch.: Influence of locations and seasons on sesquiterpene distribution. Pharm. Acta Helv. 70, 315-323. 1995.
Debrunner, B., and M. Beat. Petasites hybridus: A tool for interdisciplinary research in phytotherapy. Pharm. Acta Helv. 72: 359-362, 1998.
Debrunner, B. Influence of temperature and storage on the stability of some eremophilane esters in Petasites hybridus (L.) G.M. et Sch. (Petasin chemovar). Pharm. Acta Helv. 72: 364-365, 1998.
De Greef, W. J., M. P. Ooms, J. T. M. Vreeburg, and R. F. A. Weber. Plasma levels of luteinizing hormone during hyperprolactinemia: response to central administration of antagonists of corticotropin-releasing factor. Neuroendocrinology 61: 19-26, 1995.
De Launoit, Y., H. F. Zhao, A. Belanger, F. Labrie, and J. Simard. Expression of liver-specific member of the 3β-hydroxysteroid dehydrogenaes family, an isoform posessing an almost exclusive 3-ketosteroid reductase-activity. J. Biol. Chem. 267: 4513-4517, 1992.
De Nicola, A. Effects of ACTH on steroid C-21 hydroxylation in rat adrenal glands. J. Steroid Biochem. 6: 1219-1222, 1975.
Dickerman, Z., D. R. Grant.C. Faiman, and J. S. D. Winter. Intraadrenal steroid concentrations in man: zonal differences and developmental Changes. J. Clin. Endocrinol.& Metabolism. 59: 1031-1036, 1984.
Duncan, M. R., and G. R. Duncan. An in vivo study of the action of antiglucocorticoids on the adrenal-pituitary-hypothalamus axis. J. Steroid. Biochem. 10: 245-259, 1979.
Durand, P., A. Cathiard, A. Locatelli, and J. M. Saez. Modification of the steroidogenic pathway during spontaneous and adrenocorticotropin-induced maturation of ovine fetal adrenal. Endocrinology 110: 500-505, 1982.
Epstein, L. F., and N. R. Orme-Johnson. Acute action of luteinzing hormone on mouse Leydig cells: Accumulation of mitochondrial phosphoproteins and stimulation of testosterone biosynthesis. Mol. Cell Endocrinol. 81: 113-126, 1991.
Frantz, W. L., J. H. Macindoe, and R.W. Turkington. Prolactin receptors: Characteristics of the particulate fraction binding activity. J. Endocrinol. 60: 485-497, 1974.
Gill, G. N., C. R. Ill, and M. H. Simonian. Angiotensin stimulation of bovine adrenocortical cell growth. Proc. Natl. Acad. Sci. USA 74: 5569-5573, 1977.
Gospodarowicz, D., J. S. Moran, and H. Bialecki. Mitogenic factors from the brain and the pituitary: physiological significance. In Growth hormone and related peptides, edited by A. Pecile, and E. E. Muller. Amsterdam: Excerpta Medica, 1976, p. 141-155.
Gospodarowicz, D., C. R. Ill, P. J. Hornsby and G. N. Gill. Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect epidermal growth factor. Endocrinology 100: 1080-1089, 1977.
Gospodarowicz, D., J. S. Moran, and A. L. Mescher. Cellular specific of fibroblast growth factor and epidermal growth factor. In Proliferation and Differentiation, edited by J. Papaconstantinou and W. J. Rutter New York: Academic Press, 1978, p. 33-63.
Gradi, A., R. Tang-Wai, H. M. McBride, L. L. Chu, G. C. Shore, and J. Pelletier. The human steroidogenic acute regulatory (StAR) gene is expressed in the urogenital system and encodes a mitochondrial polypeptide. Biochim. Biophys. Acta. 1258: 228-233, 1995.
Grossman, C. J. Stress and the immune response: interactions of peptides, gonadal steroids and the immune system. In: Fourth Conference, International Symposium on Neuronal Control of Bodily Functions: New Frontiers of Stress Research; Trier Germany; September 1987.
Grossman, C. J., and G. A. Roselle. The control of immune response by endocrine factors and the clinical significance of such regulation. Prog. Clin. Biochem. Med. 4: 9, 1986.
Guerriero, A. and F. Pietra. Furanoeremohilanes From Petasites Niveus: High Solvolytic Reactivity at the C-6β Position Bearing an α,β-Unsaturated Ester Group. Phytochemistry 21: 2887-2891, 1982.
Hadley, M. E. Adrenal steroid hormone. In: Endocrinology, 3rd ed., Prentice-Hall International, Inc., Englewood Cliffs, New Jersey, 391-429, 1992a.
Hasler, A., A. Passafaro., and B. Meier. Trace analysis of pyrrolizidine alkaloids by GC-NPD of extracts from the roots of Petasites hybridus. Pharm. Acta Helv. 72: 367, 1998.
Hinson, J. P., G. P. Vinson, B. J. Whitehouse, and G. Price. Control of zona glomerulosa function in the isolated perfused rat adrenal in situ. J. Endocrinol. 104: 387-395, 1985.
Hinson, J. P., G. P. Vinson, B. J. Whitehouse, and G. Price. Adrenal mast cell modulate vascular and secretory response in the intact adrenal gland of the rat. J. Endocrinol. 121: 253-260, 1989.
Hornsby, P. J., and G. N. Gill. Hormonal control of adrenocortical cell proliferation. Desensitization to ACTH and interaction between ACTH and fibroblast growth factor in bovine adrenocortical cell cultures. J. Clin. Invest. 60: 342-352, 1977.
Hornsby, P. J., and G. N. Gill. Characterization of adult bovine adrenocortical cells throughout their life span in tissue culture. Endocrinology 102: 926-936, 1978.
Hornsby, P. J., M. Sturek, S. E. Harris and M. H. Simonian. Serum and growth factor requirements for proliferation of human adrenocortical cells in culture: comparisons with bovine adrenocortical cells. In Vitro 19: 863-869, 1983.
Hyatt, P. J. K. Bhatt, and J. F. Tait. Steroid biosynthesis by zona fasciculata and zona reticularis cell purified from the mammalian adrenal cortex. J. Steroid Biochem. 19: 953-960, 1983.
Ill, C. R. and D. Gospodarowicz. Factors involved in supporting the growth and steroidogenic functions of bovine adrenal cortical cells maintained on extracellular matrix and exposed to a serum-free medium. J. Cell Physiol. 113: 373-384, 1982.
Jahn, G. A., N. Daniel, G. Jolivet, L. Belair, C. Bole-Feysot, P. A. Kelly, and J. Djiane. In vivo study of prolactin (PRL) intracellular signalling during lactogenesis in the rat: JAK/STAR pathway is activated by PRL in the mammary gland but not in the liver. Biol. Reprod. 57: 894-900, 1997.
Juengel J. L., B. M. Meberg, A. M. Turzillo, T. M. Nett, and G. D. Niswender. Hormone regulation of messenger ribonucleic acid encoding steroidogenic acute regulatory protein in ovine corpora lutea. Endocrinology 136: 5423-5429, 1995.
Kapas, S., L. A. Cameron, J. R. Puddefoot, and J. P. Hinson. Studies on endothelin receptors in the zonae fasciculata/reticularis of the rat adrenal cortex: contrast with the zona glomerulosa. FEBS Letters 397: 186-190, 1996.
Kooy A., W. J. DE Greef, J. T. M. Vreeburg, W. H. L. Hackeng, M. P. Ooms, S. W. J. Lamberts, and R. F. A. Weber. Evidence for the involvement of corticotropin-releasing factor in the inhibition of gonadotropin release induced by hyperprolactinemia. Neuroendocrinology 51: 261-266, 1990.
Krueger, R.J., and N. R. Orme-Johnson. Acute adrenocorticotropic hormone stimulation of adrenal corticosteroidogenesis. J. Biol. Chem. 258: 10159-10167, 1983.
Lambert, F., J. Lammerant, and J. Kolanowski. The prolonged stimulatory effect of ACTH on 11 beta-hydroxylation, and its contribution to the steroidogenic potency of adrenacortical cells. J. Steroid Biochem. 20: 863-868, 1984.
Langer, T., R. Chizzola, and S. Vetter. A novel TLC system to discriminate sesquiterpenesters in Petasites hybridus. Pharm. Acta Helv. 72: 366, 1998.
Langer, T., R. Chizzola, and S. Vetter. Enzyme immunoassays to determine pyrrolizidine alkakoids in Petasites hybridus. Pharm. Acta Helv. 72: 369, 1998.
Langer, T., R. Chizzola, and S. Vetter. Crossing experiments for studying the variability of chemical composition within Petasites hybrius rhizomes. Pharm. Acta Helv. 72: 370, 1998.
Li, C. H., D. Yamashiro, D. Gospodarowicz, S. L. Kaplan, and G. Van Vilet. Total synthesis of insulin-like growth factor I (somatomedin C). Proc. Natl. Acad. Sci. USA 80: 2216-2220, 1983.
Lin D., T. Sugawara, J. F. Ill Strauss, B. J. Clark, D. M. Stocco, P. Saenger, A. Rogol, and W. L. Miller. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267: 1828-1831, 1995.
Lorence, M. C., B. A. Murry, J. M. Trant, and J. I. Mason. Human 3-hydroxysteroid dehydrogenase/Δ5 Δ4 isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 126: 2493-2498, 1990.
Luu-The, V., Y. Lachance, C. Labire, G. Leblance, J. L. Thomas, R. C. Strickler, and F. Labrie. Full length cDNA structure and deduced amino acid sequence of human 3-hydroxy-5-ene steroid dehydrogenase. Mol. Endocrinol. 3: 1310-1312, 1989.
Mckenna, T. J., D. P. Island, W. E. Nicholson, and G. W. Liddle. Angiotensin stimulates cortisol biosynthesis in human adrenal cells in vitro. Steroids 32: 2315-2320, 1978.
Mellon, S. H., S. R. Bair, and H. Monis. P450c11 3 mRNA, transcribed from a third P450c11 gene, is expressed in a tissue-specific, developmentally, and hormonally regulated fasion in the rodent adrenal and encodes a protein with both 11-hydroxylase and 18-hydroxylase activitise. J. Biol. Chem. 270: 1643-1649, 1995.
Mikami, K., M. Omura, Y. Tamura, and S. Yoshida. Possible site of action of 5-hydroperoxyeicosatetraenoic acid derived from arachidonic acid in ACTH-stimulated steroidogenesis in rat adrenal glands. J. of Endocrinol. 125: 89-96, 1990.
Miller, W. L. Molecular biology of steroid hormone synthesis. Endocr. Rev. 9: 295-318, 1988.
Neville, A. M. and M. J. O’Hare. The Human Adrenal Cortex. Pathology and Biology-An Integrated Approach. Berlin: Springer-Verlag, 1982.
Nishikawa, T., H. Sasano, M. Omura, and S. Suematsu. Regulation of expression of the steroidogenic acute regulatory (StAR) protein by ACTH in bovine adrenal fasciculata cells. Biochem. Biophys. Res. Commun. 223: 12-18, 1996.
Nishikawa, T., M. Omura, M. Noda, and S. Yoshida. Possible involvement of lipoxygenase metabilites of arachidonic acid in the regulation of pregnenolone synthesis in bovine adrenocortical mitochondria. J. Biochem. 116: 833-837, 1994.
O’Hare, M. J. and A. M. Neville. Effect of adrenocorticotropin on steroidogenesis and proliferation by adult adrenocortical cells in monolayer culture. Biochem. Soc. T. 1:1088-1091, 1973.
Owens, M. J., and C. B. Nemeroff. Physisology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 43: 425-473, 1991.
Pescador, N., S. Korian Soumano, D. M. Stocco, C. A. Price, and B. D. Murphy. Steroidogenic acute regulatory protein in bovine corpora lutea. Biol. Reprod. 55: 485-491, 1996.
Peter, S., and N. Markus. Analytic investigations of sesquiterpenes of Petasites albus (L.) and Petasites hybridus (Furanopetasin chemovar). Pharm. Acta Helv. 72: 359-380, 1998.
Piras, M. M., E. Bindstein, and R. Piras. Regulation of glycogen metabolism in adrenal gland. IV. The effect of insulin on glycogen synthetase, phosphorylase, and related metabolites. Arch. Biochem. Biophys. 154: 263-269, 1973.
Pon, L. A., and N. R. Oreme-Johnson. Acute stimulation of corpus luteum cells by gonadotropin or adenosine 3’5’-monophosphate causes accumulation of a phosphoprotein concurrent with acceleration of steroid synthesis. Endocrinology 123: 1942-1948, 1988.
Posner B. I., P. A. Kelly, R. P. C. Shiu, and H. G. Friesen. Studies of insulin, growth hormone and prolactin binding: Tissue distribution, species variation and characterization. Endocrinology 95: 521-531, 1974.
Provencher, P. H., Y. Tremblay, S. Caron, and A. Belanger. Effect of chronic ACTH treatment on guinea-pig adrenal steroidogenesis: steroid plasma levels, steroid adrenal levels, activity of steroidogenic enzymes and their steady-state mRNA levels. J. Steroid Biochem. 41: 69-78, 1992.
Rainey, W. E., P. J. Hornsby, and J. W. Shsy. Morhological correlates of adrenocorticotropin-stimulated steroidogenesis in cultured adrenocortical cells: differences between bovine and human cells. Endocrinology 113: 48-54, 1983.
Ramachandran, J. and A. T. Suyama. Inhibition of replication of normal adrenocortical cells in culture by adrenocorticotropin. Proc. Natl. Acad. Sci. USA 72: 113-117, 1975.
Safferan, M., B. Grad, and M. J. Bayliss. Production of corticoids by rat adrenals in vitro. Endocrinology 50: 639-643, 1952.
Scheidegger, C., C. Dahinden, and U. Wiesmann. Effects of extracts and of individual components from petasites on prostaglandin synthesis in cultured skin fibroblasts and on leucotriene synthesis in isolated human peripheral leucoytes. Pharm. Acta Helv. 72: 376-378. 1998.
Siegenthaler, P., and M. Neuenschwander. Analytic investigations of sesquiterpenes of Petasites albus (L.) and Petasites hybridus (Furanopetasin chemovar). Pharm. Acta Helv. 72: 362-364, 1998.
Solano, A. R., L. A. Dada, M. L. Sardanons, M. L. Sanchez and E. J. Podesta. Leukotrienes as common intermediates in the cylic AMP dependent pathways in adrenal steroidogenesis. J. steroid Biochem. 27: 745-751, 1987.
Steel, R. D., and J. H. Torrie. Principles and Procedures of Statistics. McGraw-Hill, New York, 1960.
Stocco, D. M., and M. W. Kilgore. Indction of mitochondrial protein in MA-10 Leydig tumor cells with human choriogonadotropin. Biochem. J. 249: 95-103, 1988.
Stocco, D. M., and T. C. Sodeman. The 30 kDa mitochondrial proteins indued by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J. Biol. Chem. 266: 19731-19738, 1991.
Sugama, K., K. Hayashi, T. Nakagawa, H. Mitsuhashi, and N. Yoshida. Sesquiterpenoids From Petasites Fragrans. Phytochemistry 22: 1619-1622, 1983.
Sullivan, M. H. F.,and B. A. Cooke. Control and production of leukotriene B4 in rat tummour and testicular Leydig cells. Biochem. J. 230: 821-824,1985.
Szalay, K. S., D. D. Wied, and E. Stark. Effects of ACTH-(1-24) on the corticosteroid production of isolated adrencortical cells. J. Steroid Biochem. 32: 259-262, 1989.
Venderia, P., D. Pignatelli, D. Neves, M. M. Magalhaes, M. C. Magalhaes, and G. P. Vinson. Effects of prolonged infusion of basic fibroblast growth factor and IGF-I on adrenocortical differentiation in the autotransplanted adrenal: an immunohistochemical study. J. Endocrinol. 162 : 21-29, 1999.
Vetter, S., R. Chizzola, and T. Langer. Prospects on the domestication of Petasites hybridus. Pharm. Acta Helv. 72: 359-380, 1998.
Viau, V., and M. J. Meaney. Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology 129: 2503-2511, 1991.
Weber, R. F. A., and A. E. Calogero. Prolactin stimulates rat hypothalamic corticotropin-releasing hormone and pituitary adrenocorticotropin secretion in vitro. Neuroendocrinology 54: 248-253, 1991.
Weliky, I., and L. L. Engel. Metabolism of progesterone-4-C14 and pregnenolone-7--H3 by human adrenal tissue. J. Biol. Chem. 238: 1302-1307, 1963.
Wildi, E., K. Berger-Büter, and W. Schaffner. In vitro propagation of Petasites hybridus with high petasin and low pyrrolizidine alkaloid content. Pharm. Acta Helv.72: 359-380, 1998.
Wildi, E., T. Langer, W. Schaffner, and K. Berger Büter. Quantitative analysis of petasin and pyrrolizidine alkaloids in leaves and rhizomes of in situ grown Petasites hybridus plants. Planta Med. 64: 264-267, 1998.
Yamazaki, T., K. Higuchi, S. Kominami, and S. Takemori. 15-lipoygenase mediates(s) of arachidonic acid mediates adrenocorticotropin action in bovine adrenal steroidogenesis. Endocrinology 137: 2670-2675, 1996.
Yaoita, Y. and M. Kikuchi. Structures of new dinor-eremophilane derivatives and new eremophilenolides from the rhizomes of Petasites japonicus Mazim. Chem. Pharm. Bull. 44: 1731-1735,1996.
Ziolo, G. and L. Samochowiec. Study on clinical properties and mechanism of action of petasites in bronchial asthma and chronic obstructive bronchitis. Pharm. Acta Helv.72: 378-379, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔