|
1.Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501. 2.Beutler, B. and C. van Huffel, Unraveling function in the TNF ligand and receptor families. Science, 1994. 264(5159): p. 667-8. 3.Nagata, S., Apoptosis by death factor. Cell, 1997. 88(3): p. 355-65. 4.Eck, M.J. and S.R. Sprang, The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem, 1989. 264(29): p. 17595-605. 5.Fesik, S.W., Insights into programmed cell death through structural biology. Cell, 2000. 103(2): p. 273-82. 6.Gearing, A.J., P. Beckett, M. Christodoulou, M. Churchill, J. Clements, A. H. Davidson, A. H. Drummond, W. A. Galloway, R. Gilbert, and J. L. Gordon, Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature, 1994. 370(6490): p. 555-7. 7.McGeehan, G.M., J. D. Becherer, R. C. Jr. Bast, C. M. Boyer, B. Champion, K. M. Connolly, J. G. Conway, P. Furdon, S. Karp, and S. Kidao, Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature, 1994. 370(6490): p. 558-61. 8.Tanaka, M., T. Suda, K. Haze, N. Nakamura, K. Sato, F. Kimura, K. Motoyoshi, M. Mizuki, S. Tagawa, S. Ohga, K. Hatake, A. H. Drummond, and S. Nagata, Fas ligand in human serum. Nat Med, 1996. 2(3): p. 317-22. 9.Hollenbaugh, D., L. S. Grosmaire, C. D. Kullas, N. J. Chalupny, S. Braesch-Andersen, R. J. Noelle, I. Stamenkovic, J. A. Ledbetter, and A. Aruffo, The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J, 1992. 11(12): p. 4313-21. 10.Tamada, K., K. Shimozaki, A. I. Chapoval, Y. Zhai, J. Su, S. F. Chen, S. L. Hsieh, S. Nagata, J. Ni, and L. Chen, LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol, 2000. 164(8): p. 4105-10. 11.Baker, S.J. and E.P. Reddy, Modulation of life and death by the TNF receptor superfamily. Oncogene, 1998. 17(25): p. 3261-70. 12.Banner, D.W., A. D'Arcy, W. Janes, R. Gentz, H. J. Schoenfeld, C. Broger, H. Loetscher, and W. Lesslauer, Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell, 1993. 73(3): p. 431-45. 13.Arch, R.H., R.W. Gedrich, and C.B. Thompson, Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes Dev, 1998. 12(18): p. 2821-30. 14.Simonet, W.S., D. L. Lacey, C. R. Dunstan, M. Kelley, M. S. Chang, R. Luthy, H. Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H. L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T. M. Hughes, D. Hill, W. Pattison, P. Campbell, and W. J. Boyle, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997. 89(2): p. 309-19. 15.Pitti, R.M., S. A. Marsters, D. A. Lawrence, M. Roy, F. C. Kischkel, P. Dowd, A. Huang, C. J. Donahue, S. W. Sherwood, D. T. Baldwin, P. J. Godowski, W. I. Wood, A. L. Gurney, K. J. Hillan, R. L. Cohen, A. D. Goddard, D. Botstein, and A. Ashkenazi, Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 1998. 396(6712): p. 699-703. 16.Sheridan, J.P., S. A. Marsters, R. M. Pitti, A. Gurney, M. Skubatch, D. Baldwin, L. Ramakrishnan, C. L. Gray, K. Baker, W. I. Wood, A. D. Goddard, P. Godowski, and A. Ashkenazi, Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science, 1997. 277(5327): p. 818-21. 17.Yu, K.Y., B. Kwon, J. Ni, Y. Zhai, R. Ebner, and B. S. Kwon, A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem, 1999. 274(20): p. 13733-6. 18.Bai, C., B. Connolly, M. L. Metzker, C. A. Hilliard, X. Liu, V. Sandig, A. Soderman, S. M. Galloway, Q. Liu, C. P. Austin, and C. T. Caskey, Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1230-5. 19.Ohshima, K., S. Haraoka, M. Sugihara, J. Suzumiya, C. Kawasaki, M. Kanda, and M. Kikuchi, Amplification and expression of a decoy receptor for fas ligand (DcR3) in virus (EBV or HTLV-I) associated lymphomas. Cancer Lett, 2000. 160(1): p. 89-97. 20.Roth, W., S. Isenmann, M. Nakamura, M. Platten, W. Wick, P. Kleihues, M. Bahr, H. Ohgaki, A. Ashkenazi, and M. Weller, Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res, 2001. 61(6): p. 2759-65. 21.Suda, T., T. Takahashi, P. Golstein, and S. Nagata, Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell, 1993. 75(6): p. 1169-78. 22.Nagata, S., Fas ligand-induced apoptosis. Annu Rev Genet, 1999. 33: p. 29-55. 23.Bossi, G. and G.M. Griffiths, Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med, 1999. 5(1): p. 90-6. 24.Boldin, M.P., T. M. Goncharov, Y. V. Goltsev, and D. Wallach, Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell, 1996. 85(6): p. 803-15. 25.Hirata, H., A. Takahashi, S. Kobayashi, S. Yonehara, H. Sawai, T. Okazaki, K. Yamamoto, and M. Sasada, Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med, 1998. 187(4): p. 587-600. 26.Stroh, C. and K. Schulze-Osthoff, Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ, 1998. 5(12): p. 997-1000. 27.Wajant, H., M. Grell, and P. Scheurich, TNF receptor associated factors in cytokine signaling. Cytokine Growth Factor Rev, 1999. 10(1): p. 15-26. 28.Force, W.R., A. A. Glass, C. A. Benedict, T. C. Cheung, J. Lama, and C. F. Ware, Discrete signaling regions in the lymphotoxin-beta receptor for tumor necrosis factor receptor-associated factor binding, subcellular localization, and activation of cell death and NF-kappaB pathways. J Biol Chem, 2000. 275(15): p. 11121-9. 29.Wu, M.Y., P. Y. Wang, S. H. Han, and S. L. Hsieh, The cytoplasmic domain of the lymphotoxin-beta receptor mediates cell death in HeLa cells. J Biol Chem, 1999. 274(17): p. 11868-73. 30.Rooney, I.A., K. D. Butrovich, A. A. Glass, S. Borboroglu, C. A. Benedict, J. C. Whitbeck, G. H. Cohen, R. J. Eisenberg, and C. F. Ware, The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem, 2000. 275(19): p. 14307-15. 31.Harrop, J.A., P. C. McDonnell, M. Brigham-Burke, S. D. Lyn, J. Minton, K. B. Tan, K. Dede, J. Spampanato, C. Silverman, P. Hensley, R. DiPrinzio, J. G. Emery, K. Deen, C. Eichman, M. Chabot-Fletcher, A. Truneh, and P. R. Young, Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for HVEM/TR2, stimulates proliferation of T cells and inhibits HT29 cell growth. J Biol Chem, 1998. 273(42): p. 27548-56. 32.Zhai, Y., R. Guo, T. L. Hsu, G. L. Yu, J. Ni, B. S. Kwon, G. W. Jiang, J. Lu, J. Tan, M. Ugustus, K. Carter, L. Rojas, F. Zhu, C. Lincoln, G. Endress, L. Xing, S. Wang, K. O. Oh, R. Gentz, S. Ruben, M. E. Lippman, S. L. Hsieh, and D. Yang, LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest, 1998. 102(6): p. 1142-51. 33.Morrissette, N., E. Gold, and A. Aderem, The macrophage--a cell for all seasons. Trends Cell Biol, 1999. 9(5): p. 199-201. 34.Medzhitov, R. and C. Janeway, Jr., Innate immunity. N Engl J Med, 2000. 343(5): p. 338-44. 35.Raetz, C.R., Biochemistry of endotoxins. Annu Rev Biochem, 1990. 59: p. 129-70. 36.Jack, R.S., X. Fan, M. Bernheiden, G. Rune, M. Ehlers, A. Weber, G. Kirsch, R. Mentel, B. Furll, M. Freudenberg, G. Schmitz, F. Stelter, and C. Schutt, Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature, 1997. 389(6652): p. 742-5. 37.Wurfel, M.M., B. G. Monks, R. R. Ingalls, R. L. Dedrick, R. Delude, D. Zhou, N. Lamping, R. R. Schumann, R. Thieringer, M. J. Fenton, S. D. Wright, and D. Golenbock, Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. J Exp Med, 1997. 186(12): p. 2051-6. 38.Haziot, A., E. Ferrero, F. Kontgen, N. Hijiya, S. Yamamoto, J. Silver, C. L. Stewart, and S. M. Goyer , Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity, 1996. 4(4): p. 407-14. 39.Poltorak, A., et al., Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis, 1998. 24(3): p. 340-55. 40.Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. V. Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler, Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998. 282(5396): p. 2085-8. 41.Shimazu, R., S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake, and M. Kimoto, MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med, 1999. 189(11): p. 1777-82. 42.Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, and C. A. Janeway, Jr., MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell, 1998. 2(2): p. 253-8. 43.Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira, Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999. 11(1): p. 115-22. 44.Kanakaraj, P., P. H. Schafer, D. E. Cavender, Y. Wu, K. Ngo, P. F. Grealish, S. A. Wadsworth, P. A. Peterson, J. J. Siekierka, C. A. Harris, and W. P. Fung-Leung, Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J Exp Med, 1998. 187(12): p. 2073-9. 45.Lomaga, M.A., W. C. Yeh, I. Sarosi, G. S. Duncan, C. Furlonger, A. Ho, S. Morony, C. Capparelli, G. Van, S. Kaufman, A. van der Heiden, A. Itie, A. Wakeham, W. Khoo, T. Sasaki, Z. Cao, J. M. Penninger, C. J. Paige, D. L. Lacey, C. R. Dunstan, W. J. Boyle, D. V. Goeddel, and T. W. Mak, TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999. 13(8): p. 1015-24. 46.Anderson, K.V., Toll signaling pathways in the innate immune response. Curr Opin Immunol, 2000. 12(1): p. 13-9. 47.Aderem, A. and D.M. Underhill, Mechanisms of phagocytosis in macrophages. Annu Rev Immunol, 1999. 17: p. 593-623. 48.Chimini, G. and P. Chavrier, Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol, 2000. 2(10): p. E191-6. 49.Ravetch, J.V., Fc receptors. Curr Opin Immunol, 1997. 9(1): p. 121-5. 50.Ravetch, J.V., Fc receptors: rubor redux. Cell, 1994. 78(4): p. 553-60. 51.Daeron, M., Fc receptor biology. Annu Rev Immunol, 1997. 15: p. 203-34. 52.Carroll, M.C., The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol, 1998. 16: p. 545-68. 53.Wright, S.D. and F.M. Griffin, Jr., Activation of phagocytic cells' C3 receptors for phagocytosis. J Leukoc Biol, 1985. 38(2): p. 327-39. 54.Kaplan, G., Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol, 1977. 6(8): p. 797-807. 55.Allen, L.A. and A. Aderem, Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med, 1996. 184(2): p. 627-37. 56.Wright, S.D. and S.C. Silverstein, Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med, 1983. 158(6): p. 2016-23. 57.Fadok, V.A., D. L. Bratton, S. C. Frasch, M. L. Warner, and P. M. Henson, The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ, 1998. 5(7): p. 551-62. 58.Savill, J. and V. Fadok, Corpse clearance defines the meaning of cell death. Nature, 2000. 407(6805): p. 784-8. 59.Fadok, V.A., D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest, 1998. 101(4): p. 890-8. 60.Hsu, T.L., Y. C. Chang, S. J. Chen, Y. J. Liu, A. W. Chiu, C. C. Chio, J. C. Wu, L. S. Wang, L. Y. Shih, L. Chen, and S. L. Hsieh, Modulation of dendritic cells differentiation and maturation by decoy receptor 3 (DcR3): a soluble tumor necrosis factor receptor homologue upregulated in cancer patients. Revised in Blood, 2001. 61.Tamura, T., T. Nagamura-Inoue, Z. Shmeltzer, T. Kuwata, and K. Ozato, ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity, 2000. 13(2): p. 155-65. 62.Butcher, E.C. and I.L. Weissman, Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. I. Technical aspects. J Immunol Methods, 1980. 37(2): p. 97-108. 63.Hess, K.L., G. F. Babcock, D. S. Askew, and J. M. Cook-Mills, A novel flow cytometric method for quantifying phagocytosis of apoptotic cells. Cytometry, 1997. 27(2): p. 145-52. 64.Ju, S.T., D. J. Panka, H. Cui, R. Ettinger, M. el-Khatib, D. H. Sherr, B. Z. Stanger, and A. Marshak-Rothstein, Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature, 1995. 373(6513): p. 444-8. 65.Aderem, A. and R.J. Ulevitch, Toll-like receptors in the induction of the innate immune response. Nature, 2000. 406(6797): p. 782-7. 66.Siziopikou, K.P., J. E. Harris, L. Casey, Y. Nawas, and D. P. Braun, Impaired tumoricidal function of alveolar macrophages from patients with non-small cell lung cancer. Cancer, 1991. 68(5): p. 1035-44. 67.Almand, B., J. I. Clark, E. Nikitina, J. van Beynen, N. R. English, S. C. Knight, D. P. Carbone, and D. I. Gabrilovich, , Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol, 2001. 166(1): p. 678-89. 68.Manca, F., D. Fenoglio, G. Li Pira, A. Kunkl, and F. Celada, Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med, 1991. 173(1): p. 37-48. 69.Gauci, C.L. and P. Alexander, The macrophage content of some human tumours. Cancer Lett, 1975. 1(1): p. 29-32. 70.Koch, B., J. Giedl, P. Hermanek, and J. R. Kalden, The analysis of mononuclear cell infiltrations in colorectal adenocarcinoma. J Cancer Res Clin Oncol, 1985. 109(2): p. 142-51. 71.Snyderman, R., M. C. Pike, B. L. Blaylock, and P. Weinstein, Effects of neoplasms on inflammation: depression of macrophage accumulation after tumor implantation. J Immunol, 1976. 116(3): p. 585-9. 72.Bottazzi, B., F. Colotta, A. Sica, N. Nobili, and A. Mantovani, A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer, 1990. 45(4): p. 795-7. 73.Bernasconi, S., C. Matteucci, M. Sironi, M. Conni, F. Colotta, M. Mosca, N. Colombo, C. Bonazzi, F. Landoni, and G. Corbetta, Effects of granulocyte-monocyte colony-stimulating factor (GM-CSF) on expression of adhesion molecules and production of cytokines in blood monocytes and ovarian cancer-associated macrophages. Int J Cancer, 1995. 60(3): p. 300-7.
|