( 您好!臺灣時間:2021/02/26 04:20
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Yung-Chi Chang
論文名稱(外文):Modulatory effects of decoy receptor 3 on T cell and macrophage differentiation and activation
指導教授(外文):Shie-Liang Hsieh
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
活化腫瘤壞死因子受體 (TNFR) 家族的成員會調控許多生物功能,包括細胞增生、分化、死亡、以及細胞激素 (cytokine) 的分泌。最近一個新被發現的腫瘤壞死因子受體成員,第三號誘餌受體 (decoy receptor 3),被報導可以作為FasL和LIGHT的可溶性同源受體,以中和它們的毒性 (cytotoxicity)。在我們之前的發現指出 [60],第三號誘餌受體不但可以在癌症病人的血清中被偵測到,而且它還可以染上單核細胞 (monocytes) 和B淋巴球 (B lymphocytes) 上的特定分子。所以我們對第三號誘餌受體是否除了中和FasL和LIGHT的毒性外,還具有其他調控免疫系統的能力很有興趣。為了回答這個問題,人類CD4+ T淋巴球和自單核細胞細胞分化成的巨噬細胞 (macrophage) 被用來測試我們的假設。我們發現,第三號誘餌受體並不具有明顯改變正常人T淋巴球增生的能力,但是它對於巨噬細胞的分化和活化則有廣泛的影響。巨噬細胞上的表面抗原CD86表現量在第三號誘餌受體處理後會被調節上升,而CD14、CD16、CD80、HLA-DR的表現量則會下降。此外,除了巨噬細胞的吞噬 (phagocytosis) 能力幾乎完全被第三號誘餌受體所抑制外,巨噬細胞在內毒素 (LPS) 刺激後,分泌的IL-1b、IL-6、TNF-a,和一氧化氮合成脢 (iNOS) 的能力也顯著的被抑制。但是在另一方面,雖然第三號誘餌受體也會抑制凋零死亡 (apoptosis) 細胞被巨噬細胞清除的過程,可是對於伴隨吞噬作而產生的免疫抑制激素 (immune-suppressive cytokine) 的分泌,例如TGF-b1,卻不會完全被抑制。我們所觀察到這些第三號誘餌受體對巨噬細胞多樣化的影響,並不是單純只是經由中和FasL和LIGHT的毒性可達成的。我們認為,第三號受餌誘導是腫瘤所分泌的一個有效分子 (effective molecule),除了可以中和FasL和LIGHT的毒性外,它本身還可以有效而廣泛的抑制免疫系統活化,已達成腫瘤逃避免疫系統攻擊的目的。

Activation of members of TNFR superfamily are involved in the regulation of pleiotropic biological processes such as cell proliferation, differentiation, apoptosis, cytokine production. Recently, a novel member of the TNFR superfamily, DcR3, was identified as soluble cognate receptor for LIGHT and Fas ligand (FasL). In our previous study [60], we found that DcR3 could be detected in the serum, and bind to the surface of monocytes, B cells, but not T cells. Therefore, we are interested to understand whether it has any modulatory effects on host immune system, in addition to its neutralizing effect of FasL and LIGHT. To address this question, human CD4+ T cells and CD14+ monocyte-derived macrophages were used to test our hypothesis. We found that DcR3 did not have obvious effects to regulate T cell proliferation of normal individuals, however, DcR3 had profound effects on macrophage differentiation and activation. The expression of CD86 on macrophages was up-regulated, while CD14, CD16, CD80 and HLA-DR were down-regulated by DcR3. Moreover, phagocytic activity of macrophages was almost completely inhibited by DcR3, and DcR3-treated macrophages were also impaired to secrete IL-1b, IL-6, TNF-a and synthesize iNOS in response to LPS stimulation. In contrast to the inflammatory reactions, the secretion of immune-suppressive cytokine, such as TGF-b1, was not completely suppressed by DcR3, although DcR3 inhibited the engulfment of apoptotic cells by macrophages. The diverse regulatory effects of DcR3 were not via neutralizing FasL and LIGHT, and this observation raised the argument that the DcR3 should not be simply regarded as soluble receptor, but as an effective molecule to modulate host immunity and protect tumor cells from attack of host immune system.

1.Tumor Necrosis Factor and TNF Receptor Superfamilies3
2.Dceoy Receptor 3 and Its Ligands5
4.Purpose of Experiment13
Materials and Methods14
1.Reagents and solutions14
2.Culture medium20
3.Cell lines21
1.Bacterial Culture22
2.Preparation of DNA22
3.Cloning Techniques24
4.Bacterial Transformation25
5.Polymerase Chain Reaction26
7.Western blotting28
9.Purification of Recombinant Proteins30
10.Cell Culture30
11.Proliferation Assay32
12.Flow Cytometry Analysis34
13.ELISA for Cytokine Analysis36
14.Macrophage Phagocytosis Aaasy37
1.Effects of DcR3 on T cells42
2.Effects of DcR3 on CD14+ Monocytes and Macrophages45
3.Establishment of In Vivo Model System to Study DcR3 Functions52
Conclusion and Discussion55

1.Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501.
2.Beutler, B. and C. van Huffel, Unraveling function in the TNF ligand and receptor families. Science, 1994. 264(5159): p. 667-8.
3.Nagata, S., Apoptosis by death factor. Cell, 1997. 88(3): p. 355-65.
4.Eck, M.J. and S.R. Sprang, The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem, 1989. 264(29): p. 17595-605.
5.Fesik, S.W., Insights into programmed cell death through structural biology. Cell, 2000. 103(2): p. 273-82.
6.Gearing, A.J., P. Beckett, M. Christodoulou, M. Churchill, J. Clements, A. H. Davidson, A. H. Drummond, W. A. Galloway, R. Gilbert, and J. L. Gordon, Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature, 1994. 370(6490): p. 555-7.
7.McGeehan, G.M., J. D. Becherer, R. C. Jr. Bast, C. M. Boyer, B. Champion, K. M. Connolly, J. G. Conway, P. Furdon, S. Karp, and S. Kidao, Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature, 1994. 370(6490): p. 558-61.
8.Tanaka, M., T. Suda, K. Haze, N. Nakamura, K. Sato, F. Kimura, K. Motoyoshi, M. Mizuki, S. Tagawa, S. Ohga, K. Hatake, A. H. Drummond, and S. Nagata, Fas ligand in human serum. Nat Med, 1996. 2(3): p. 317-22.
9.Hollenbaugh, D., L. S. Grosmaire, C. D. Kullas, N. J. Chalupny, S. Braesch-Andersen, R. J. Noelle, I. Stamenkovic, J. A. Ledbetter, and A. Aruffo, The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J, 1992. 11(12): p. 4313-21.
10.Tamada, K., K. Shimozaki, A. I. Chapoval, Y. Zhai, J. Su, S. F. Chen, S. L. Hsieh, S. Nagata, J. Ni, and L. Chen, LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol, 2000. 164(8): p. 4105-10.
11.Baker, S.J. and E.P. Reddy, Modulation of life and death by the TNF receptor superfamily. Oncogene, 1998. 17(25): p. 3261-70.
12.Banner, D.W., A. D'Arcy, W. Janes, R. Gentz, H. J. Schoenfeld, C. Broger, H. Loetscher, and W. Lesslauer, Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell, 1993. 73(3): p. 431-45.
13.Arch, R.H., R.W. Gedrich, and C.B. Thompson, Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes Dev, 1998. 12(18): p. 2821-30.
14.Simonet, W.S., D. L. Lacey, C. R. Dunstan, M. Kelley, M. S. Chang, R. Luthy, H. Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H. L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T. M. Hughes, D. Hill, W. Pattison, P. Campbell, and W. J. Boyle, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997. 89(2): p. 309-19.
15.Pitti, R.M., S. A. Marsters, D. A. Lawrence, M. Roy, F. C. Kischkel, P. Dowd, A. Huang, C. J. Donahue, S. W. Sherwood, D. T. Baldwin, P. J. Godowski, W. I. Wood, A. L. Gurney, K. J. Hillan, R. L. Cohen, A. D. Goddard, D. Botstein, and A. Ashkenazi, Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 1998. 396(6712): p. 699-703.
16.Sheridan, J.P., S. A. Marsters, R. M. Pitti, A. Gurney, M. Skubatch, D. Baldwin, L. Ramakrishnan, C. L. Gray, K. Baker, W. I. Wood, A. D. Goddard, P. Godowski, and A. Ashkenazi, Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science, 1997. 277(5327): p. 818-21.
17.Yu, K.Y., B. Kwon, J. Ni, Y. Zhai, R. Ebner, and B. S. Kwon, A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem, 1999. 274(20): p. 13733-6.
18.Bai, C., B. Connolly, M. L. Metzker, C. A. Hilliard, X. Liu, V. Sandig, A. Soderman, S. M. Galloway, Q. Liu, C. P. Austin, and C. T. Caskey, Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1230-5.
19.Ohshima, K., S. Haraoka, M. Sugihara, J. Suzumiya, C. Kawasaki, M. Kanda, and M. Kikuchi, Amplification and expression of a decoy receptor for fas ligand (DcR3) in virus (EBV or HTLV-I) associated lymphomas. Cancer Lett, 2000. 160(1): p. 89-97.
20.Roth, W., S. Isenmann, M. Nakamura, M. Platten, W. Wick, P. Kleihues, M. Bahr, H. Ohgaki, A. Ashkenazi, and M. Weller, Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res, 2001. 61(6): p. 2759-65.
21.Suda, T., T. Takahashi, P. Golstein, and S. Nagata, Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell, 1993. 75(6): p. 1169-78.
22.Nagata, S., Fas ligand-induced apoptosis. Annu Rev Genet, 1999. 33: p. 29-55.
23.Bossi, G. and G.M. Griffiths, Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med, 1999. 5(1): p. 90-6.
24.Boldin, M.P., T. M. Goncharov, Y. V. Goltsev, and D. Wallach, Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell, 1996. 85(6): p. 803-15.
25.Hirata, H., A. Takahashi, S. Kobayashi, S. Yonehara, H. Sawai, T. Okazaki, K. Yamamoto, and M. Sasada, Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med, 1998. 187(4): p. 587-600.
26.Stroh, C. and K. Schulze-Osthoff, Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ, 1998. 5(12): p. 997-1000.
27.Wajant, H., M. Grell, and P. Scheurich, TNF receptor associated factors in cytokine signaling. Cytokine Growth Factor Rev, 1999. 10(1): p. 15-26.
28.Force, W.R., A. A. Glass, C. A. Benedict, T. C. Cheung, J. Lama, and C. F. Ware, Discrete signaling regions in the lymphotoxin-beta receptor for tumor necrosis factor receptor-associated factor binding, subcellular localization, and activation of cell death and NF-kappaB pathways. J Biol Chem, 2000. 275(15): p. 11121-9.
29.Wu, M.Y., P. Y. Wang, S. H. Han, and S. L. Hsieh, The cytoplasmic domain of the lymphotoxin-beta receptor mediates cell death in HeLa cells. J Biol Chem, 1999. 274(17): p. 11868-73.
30.Rooney, I.A., K. D. Butrovich, A. A. Glass, S. Borboroglu, C. A. Benedict, J. C. Whitbeck, G. H. Cohen, R. J. Eisenberg, and C. F. Ware, The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem, 2000. 275(19): p. 14307-15.
31.Harrop, J.A., P. C. McDonnell, M. Brigham-Burke, S. D. Lyn, J. Minton, K. B. Tan, K. Dede, J. Spampanato, C. Silverman, P. Hensley, R. DiPrinzio, J. G. Emery, K. Deen, C. Eichman, M. Chabot-Fletcher, A. Truneh, and P. R. Young, Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for HVEM/TR2, stimulates proliferation of T cells and inhibits HT29 cell growth. J Biol Chem, 1998. 273(42): p. 27548-56.
32.Zhai, Y., R. Guo, T. L. Hsu, G. L. Yu, J. Ni, B. S. Kwon, G. W. Jiang, J. Lu, J. Tan, M. Ugustus, K. Carter, L. Rojas, F. Zhu, C. Lincoln, G. Endress, L. Xing, S. Wang, K. O. Oh, R. Gentz, S. Ruben, M. E. Lippman, S. L. Hsieh, and D. Yang, LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest, 1998. 102(6): p. 1142-51.
33.Morrissette, N., E. Gold, and A. Aderem, The macrophage--a cell for all seasons. Trends Cell Biol, 1999. 9(5): p. 199-201.
34.Medzhitov, R. and C. Janeway, Jr., Innate immunity. N Engl J Med, 2000. 343(5): p. 338-44.
35.Raetz, C.R., Biochemistry of endotoxins. Annu Rev Biochem, 1990. 59: p. 129-70.
36.Jack, R.S., X. Fan, M. Bernheiden, G. Rune, M. Ehlers, A. Weber, G. Kirsch, R. Mentel, B. Furll, M. Freudenberg, G. Schmitz, F. Stelter, and C. Schutt, Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature, 1997. 389(6652): p. 742-5.
37.Wurfel, M.M., B. G. Monks, R. R. Ingalls, R. L. Dedrick, R. Delude, D. Zhou, N. Lamping, R. R. Schumann, R. Thieringer, M. J. Fenton, S. D. Wright, and D. Golenbock, Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. J Exp Med, 1997. 186(12): p. 2051-6.
38.Haziot, A., E. Ferrero, F. Kontgen, N. Hijiya, S. Yamamoto, J. Silver, C. L. Stewart, and S. M. Goyer , Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity, 1996. 4(4): p. 407-14.
39.Poltorak, A., et al., Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis, 1998. 24(3): p. 340-55.
40.Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. V. Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler, Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998. 282(5396): p. 2085-8.
41.Shimazu, R., S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake, and M. Kimoto, MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med, 1999. 189(11): p. 1777-82.
42.Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, and C. A. Janeway, Jr., MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell, 1998. 2(2): p. 253-8.
43.Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira, Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999. 11(1): p. 115-22.
44.Kanakaraj, P., P. H. Schafer, D. E. Cavender, Y. Wu, K. Ngo, P. F. Grealish, S. A. Wadsworth, P. A. Peterson, J. J. Siekierka, C. A. Harris, and W. P. Fung-Leung, Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J Exp Med, 1998. 187(12): p. 2073-9.
45.Lomaga, M.A., W. C. Yeh, I. Sarosi, G. S. Duncan, C. Furlonger, A. Ho, S. Morony, C. Capparelli, G. Van, S. Kaufman, A. van der Heiden, A. Itie, A. Wakeham, W. Khoo, T. Sasaki, Z. Cao, J. M. Penninger, C. J. Paige, D. L. Lacey, C. R. Dunstan, W. J. Boyle, D. V. Goeddel, and T. W. Mak, TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999. 13(8): p. 1015-24.
46.Anderson, K.V., Toll signaling pathways in the innate immune response. Curr Opin Immunol, 2000. 12(1): p. 13-9.
47.Aderem, A. and D.M. Underhill, Mechanisms of phagocytosis in macrophages. Annu Rev Immunol, 1999. 17: p. 593-623.
48.Chimini, G. and P. Chavrier, Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol, 2000. 2(10): p. E191-6.
49.Ravetch, J.V., Fc receptors. Curr Opin Immunol, 1997. 9(1): p. 121-5.
50.Ravetch, J.V., Fc receptors: rubor redux. Cell, 1994. 78(4): p. 553-60.
51.Daeron, M., Fc receptor biology. Annu Rev Immunol, 1997. 15: p. 203-34.
52.Carroll, M.C., The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol, 1998. 16: p. 545-68.
53.Wright, S.D. and F.M. Griffin, Jr., Activation of phagocytic cells' C3 receptors for phagocytosis. J Leukoc Biol, 1985. 38(2): p. 327-39.
54.Kaplan, G., Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol, 1977. 6(8): p. 797-807.
55.Allen, L.A. and A. Aderem, Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med, 1996. 184(2): p. 627-37.
56.Wright, S.D. and S.C. Silverstein, Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med, 1983. 158(6): p. 2016-23.
57.Fadok, V.A., D. L. Bratton, S. C. Frasch, M. L. Warner, and P. M. Henson, The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ, 1998. 5(7): p. 551-62.
58.Savill, J. and V. Fadok, Corpse clearance defines the meaning of cell death. Nature, 2000. 407(6805): p. 784-8.
59.Fadok, V.A., D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest, 1998. 101(4): p. 890-8.
60.Hsu, T.L., Y. C. Chang, S. J. Chen, Y. J. Liu, A. W. Chiu, C. C. Chio, J. C. Wu, L. S. Wang, L. Y. Shih, L. Chen, and S. L. Hsieh, Modulation of dendritic cells differentiation and maturation by decoy receptor 3 (DcR3): a soluble tumor necrosis factor receptor homologue upregulated in cancer patients. Revised in Blood, 2001.
61.Tamura, T., T. Nagamura-Inoue, Z. Shmeltzer, T. Kuwata, and K. Ozato, ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity, 2000. 13(2): p. 155-65.
62.Butcher, E.C. and I.L. Weissman, Direct fluorescent labeling of cells with fluorescein or rhodamine isothiocyanate. I. Technical aspects. J Immunol Methods, 1980. 37(2): p. 97-108.
63.Hess, K.L., G. F. Babcock, D. S. Askew, and J. M. Cook-Mills, A novel flow cytometric method for quantifying phagocytosis of apoptotic cells. Cytometry, 1997. 27(2): p. 145-52.
64.Ju, S.T., D. J. Panka, H. Cui, R. Ettinger, M. el-Khatib, D. H. Sherr, B. Z. Stanger, and A. Marshak-Rothstein, Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature, 1995. 373(6513): p. 444-8.
65.Aderem, A. and R.J. Ulevitch, Toll-like receptors in the induction of the innate immune response. Nature, 2000. 406(6797): p. 782-7.
66.Siziopikou, K.P., J. E. Harris, L. Casey, Y. Nawas, and D. P. Braun, Impaired tumoricidal function of alveolar macrophages from patients with non-small cell lung cancer. Cancer, 1991. 68(5): p. 1035-44.
67.Almand, B., J. I. Clark, E. Nikitina, J. van Beynen, N. R. English, S. C. Knight, D. P. Carbone, and D. I. Gabrilovich, , Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol, 2001. 166(1): p. 678-89.
68.Manca, F., D. Fenoglio, G. Li Pira, A. Kunkl, and F. Celada, Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med, 1991. 173(1): p. 37-48.
69.Gauci, C.L. and P. Alexander, The macrophage content of some human tumours. Cancer Lett, 1975. 1(1): p. 29-32.
70.Koch, B., J. Giedl, P. Hermanek, and J. R. Kalden, The analysis of mononuclear cell infiltrations in colorectal adenocarcinoma. J Cancer Res Clin Oncol, 1985. 109(2): p. 142-51.
71.Snyderman, R., M. C. Pike, B. L. Blaylock, and P. Weinstein, Effects of neoplasms on inflammation: depression of macrophage accumulation after tumor implantation. J Immunol, 1976. 116(3): p. 585-9.
72.Bottazzi, B., F. Colotta, A. Sica, N. Nobili, and A. Mantovani, A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer, 1990. 45(4): p. 795-7.
73.Bernasconi, S., C. Matteucci, M. Sironi, M. Conni, F. Colotta, M. Mosca, N. Colombo, C. Bonazzi, F. Landoni, and G. Corbetta, Effects of granulocyte-monocyte colony-stimulating factor (GM-CSF) on expression of adhesion molecules and production of cytokines in blood monocytes and ovarian cancer-associated macrophages. Int J Cancer, 1995. 60(3): p. 300-7.

第一頁 上一頁 下一頁 最後一頁 top
1. 姜仁脩(1996):修正貪污治罪條例之評析(上),法務通訊,第1799期第二版。
2. 姜仁脩(1996):修正貪污治罪條例之評析(下),法務通訊,第1800期第二版。
3. 林米藏(1981):端正政風之研究,人事行政,第66期,頁43-54。
4. 金玉梅(1995):貪污價多高?天下雜誌,第175期,頁78-79。
5. 林水波(1983):貪瀆對經濟發展有正功能嗎?中國論壇,第16卷第7期(第187期),頁27-31。
6. 林山田(1979):論貪污犯罪及其防制之道,軍法專刊,第25卷第11期,頁10-16。
7. 宋筱元(1999):論專責肅貪機構之設立,人力發展月刊,第68期,頁28-33。
8. 宋筱元(1989c):論我國肅貪組織及其發展,警學叢刊,第20卷第2期(第78期),頁71-81。
9. 宋筱元(1989b):香港肅貪機構及其經驗,警政學報,第15期,頁321-343。
10. 宋筱元(1988):貪污――概念分析及其所造成的影響,警政學報,第14期,頁331-347。
11. 狄英(1987):轉折點上的香港,天下雜誌,第68期,頁13-15。
12. 江岷欽(1995):行政官僚貪污防治之比較研究(上),人事月刊,第20卷第2期(第114期),頁4-11。
13. 江岷欽(1995):行政官僚貪污防治之比較研究(下),人事月刊,第20卷第3期(第115期),頁44-55。
14. 朱楠賢(1983):從機關組織觀點看貪污問題,中國論壇,第16卷第7期(第187期),頁23-26。
15. 孫曼蘋(1987):公平嚴明的法治社會,天下雜誌,第68期,頁36-40。
系統版面圖檔 系統版面圖檔