跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭香蘭
論文名稱:分析大腸桿菌素E7胞膜移位過程中相關的遺傳分子
論文名稱(外文):Characterization of the genetic components involved in Colicin E7 translocation
指導教授:胡小婷
指導教授(外文):Shiau-Ting Hu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物暨免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:65
中文關鍵詞:大腸桿菌素 E7胞膜移位
外文關鍵詞:Colicin E7translocation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
到目前為止,我們只知 DNase 型大腸桿菌素進入細菌時需要 BtuB、OmpF、與 Tol 等蛋白質的協助,但是根據這些蛋白質所提出的胞膜移位模式,對於大腸桿菌素如何與免疫蛋白質解離,以及進入內膜的機制,解釋仍不夠詳盡。為了研究大腸桿菌素 E7 進入細菌的過程中是否有其他分子參與,以及這些分子的功能,本實驗利用轉位子 Tn5 送入大腸桿菌 K12 菌株,進行轉位突變,從中篩選出 56 株對大腸桿菌素 E7 有抗性的菌株,並且分析了其中 36 株的突變基因,以了解這些突變株產生抗性的機制,並探討這些突變基因對大腸桿菌素胞膜移位過程的影響。其他位於胞膜間區的蛋白質也可能與大腸桿菌作用,我們選用 ompT、pcr 等蛋白酶突變株,以及 dnaJ chaperonin 與 malE maltose transpoter 的突變株來測試對大腸桿菌素 E7 的抗性,結果顯示這些突變株與對大腸桿菌素 E7 的抗性無關,因此大腸桿菌素 E7 進入細菌時並不需要這些蛋白質協助,然而對於大腸桿菌素 E7 向外運送時是否有影響仍需進一步證明。另外,根據一部份突變株的實驗結果得知:大腸桿菌 K12 菌株與 O157 菌株皆能利用 OmpC 與 OmpF 進入細菌,而二者表現量會互為消長,目前已知大腸桿菌素 N 使用 OmpC 進入細菌的效率較差,因此我們推測某些突變株抵抗大腸桿菌素 E7 的機制可能是藉由增加 OmpC 的表現,並減少細菌外膜 OmpF 的數量,使大腸桿菌素 E7 不易進入細菌。

It is well known that BtuB, OmpF, and Tol proteins are required for the import of DNase-type colicins. However, the import mechanism established by these proteins cannot elucidate ow the colicins are dissociated with the immune protein and pass through the inner membrane of the bacteria. It is possible that some new genes may be mutagenesis method was used. Fifty-six colicin-resistant mutants were obtained and then thirty-six mutated genes of these mutants were analyzed to study the roles of these genes played in the mechanism of colicin-resistance and their influences on clilcin-translocation. Other periplasmic proteins, such as protease, chaperon, and transporters, may alsi be involved in the translocation of colicins. To investigate this possibility, the E. coli strains with ompT, per, dnaJ, or malE mutation were tested respectively for the colicin-resistance. The results showed that these four genes were not involved in the colicin E7-resistance. Furthermore, the analysis of ompC mutants of E. coli strains K12 and O157 revealed that not only OmpF but also OmpC might help colicin E7 to translocate the membrane. Since the entering rate of colicin N via OmpC is lower than OmpF, it is proposed that the increase of OmpC and reduction of OmpF may be a benefit to the host for colicin-resistance.

目錄...................1
英文摘要...............3
中文摘要...............4
背景介紹...............6
材料與方法............20
結果..................32
討論..................38
圖表..................50
參考文獻..............58

Argast, M., and Boos, W. (1980) Co-regulation in E.coli of a novel transport system for sn-glycerol-3-phosphate and outer membrane protein Ic. (e, E) with alkaline phosphatase and phosphate-binding protein. J Bacteriol 143, 142-50
Bouveret, E., A. Rigal, et al. (1997). The N-terminal domain of colicin E3 interacts with TolB which is involved in the colicin translocation step . Molecular Microbiology. 23(5) 909-20.
Bowles, L. K. and J. Konisky (1981). Cleavage of colicin Ia by the Escherichia coli K-12 outer membrane is not mediated by the colicin Ia receptor. Journal of Bacteriology 145(1) 668-71.
Chak, K. F. and R. James (1985). Analysis of the promoters for the two immunity genes present in the ColE3-CA38 plasmid using two new promoter probe vectors. Nucleic Acids Research 13(7) 2519-31.
Chak, K. F., W. S. Kuo, et al. (1991). Cloning and characterization of the ColE7 plasmid.” Journal of General Microbiology 137(Pt 1) 91-100.
Clavel, T., J. C. Lazzaroni, et al. (1996). Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Molecular Microbiology 19(1) 19-25.
Craig, N. L. and J. W. Roberts (1980). E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature 283(5742) 26-30.
Davies, J. K. and P. Reeves (1975). Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. Journal of Bacteriology 123(1) 102-17.
Dela, F., J. J. Larsen, et al. (1995). Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training. Diabetes 44(9) 1010-20.
Derouiche, R., H. Benedetti, et al. (1995). Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. Journal of Biological Chemistry 270(19) 11078-84.
Duche, D., M. W. Parker, et al. (1994). Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. Journal of Biological Chemistry 269(9) 6332-9.
Duplay, P., H. Bedouelle, et al. (1984). Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. Journal of Biological Chemistry 259(16) 10606-13.
Ebel, W. and J. E. Trempy (1999). Escherichia coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions To activate its own expression. Journal of Bacteriology 181(2) 577-84.
Esquinas_Rychen, M. and B. Erni (2001). Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). 3(3) 361-70.
Geiger, O., F. D. Russo, et al. (1992). Membrane-derived oligosaccharides affect porin osmoregulation only in media of low ionic strength. Journal of Bacteriology 174(4) 1410-3.
Gottesman, S. and V. Stout (1991). Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Molecular Microbiology 5(7) 1599-606.
Hardy, K. G. (1975). Colicinogeny and related phenomena. Bacteriological Reviews 39(4) 464-515.
Hasegawa, Y., H. Yamada, et al. (1976). Interactions of outer membrane proteins O-8 and O-9 with peptidoglycan sacculus of Escherichia coli K-12. 80(6) 1401-9.
Hsieh, S. Y., T. P. Ko, et al. (1997). A novel role of ImmE7 in the autoregulatory expression of the ColE7 operon and identification of possible RNase active sites in the crystal structure of dimeric ImmE7. EMBO Journal 16(6) 1444-54.
Inukai, M., J. Ghrayeb, et al. (1984). Apolipoprotein, an intermediate in the processing of the major lipoprotein of the Escherichia coli outer membrane. Journal of Biological Chemistry 259(2) 757-60.
Isnard, M., A. Rigal, et al. (1994). Maturation and localization of the TolB protein required for colicin import. Journal of Bacteriology 176(20) 6392-6.
James, R., C. Kleanthous, et al. (1996). The biology of E colicins: paradigms and paradoxes. Microbiology 142(Pt 7) 1569-80.
Kampfenkel, K. and V. Braun (1993). Membrane topologies of the TolQ and TolR proteins of Escherichia coli: inactivation of TolQ by a missense mutation in the proposed first transmembrane segment. Journal of Bacteriology 175(14) 4485-91.
Kouhen, R. E., Fierobe, H. P. et al. (1993) Characterization of the receptor and translocatior domains of colicin N. Eur J.Biochem 214, 635-639.
Lacroix, J. M., I. Loubens, et al. (1991). The mdoA locus of Escherichia coli consists of an operon under osmotic control. Molecular Microbiology 5(7) 1745-53.
Lazdunski, C. J., E. Bouveret, et al. (1998). Colicin import into Escherichia coli cells. Journal of Bacteriology 180(19) 4993-5002.
Lazzaroni, J. C., A. Vianney, et al. (1995). Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex. Journal of Molecular Biology 246(1) 1-7.
Levengood, S. K. and R. E. Webster (1989). Nucleotide sequences of the tolA and tolB genes and localization of their products, components of a multistep translocation system in Escherichia coli. Journal of Bacteriology 171(12) 6600-9.
Lewin, T. M. and R. E. Webster (1996). Membrane insertion characteristics of the various transmembrane domains of the Escherichia coli TolQ protein. Journal of Biological Chemistry 271(24) 14143-9.
Liao, C. C., K. C. Hsiao, et al. (2001). Processing of DNase domain during translocation of colicin E7 across the membrane of Escherichia coli. Biochemical and Biophysical Research Communications 284(3) 556-62.
Lu, F. M. and K. F. Chak (1996). Two overlapping SOS-boxes in ColE operons are responsible for the viability of cells harboring the Col plasmid. Molecular & General Genetics 251(4) 407-11.
Lugtenberg, B., R. Peters, et al. (1976). Influence of cultural conditions and mutations on the composition of the outer membrane proteins of Escherichia coli. Molecular and General Genetics 147(3) 251-62.
Makino, S., J. N. Qu, et al. (1997). A silent mutation in the ftsH gene of Escherichia coli that affects FtsH protein production and colicin tolerance. Molecular & General Genetics 254(5) 578-83.
Maupin_Furlow, J. A., J. K. Rosentel, et al. (1995). Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. Journal of Bacteriology 177(17) 4851-6.
Mizuno, T.,Chou, M.Y., and Inouye, M. (1983). A comparative study on the genes for three porins of E.coli outer membrane. DNA sequence of osmoregulated OmpC gene. J Biol Chem 258, 1069-76
Muga, A., J. M. Gonzalez-Manas, et al. (1993). pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. Journal of Biological Chemistry 268(3) 1553-7.
Nikaido, H. (1994). Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Letters 346(1) 55-8.
Nikaido, H. and M. Vaara (1985). Molecular basis of bacterial outer membrane permeability. Microbiological Reviews 49(1) 1-32.
Pommer, A. J., R. Wallis, et al. (1998). Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9 from Escherichia coli. Biochemical Journal 334(Pt 2) 387-92.
Pugsley, A. P. (1987). Nucleotide sequencing of the structural gene for colicin N reveals homology between the catalytic, C-terminal domains of colicins A and N. Molecular Microbiology 1(3) 317-25.
Pugsley, A. P. and M. Schwartz (1984). Colicin E2 release: lysis, leakage or secretion Possible role of a phospholipase. EMBO Journal 3(10) 2393-7.
Rosenshine, I., M. S. Donnenberg, et al. (1992). Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. Embo Journal 11(10) 3551-60.
Sen, K. and H. Nikaido (1991). Trimerization of an in vitro synthesized OmpF porin of Escherichia coli outer membrane. Journal of Biological Chemistry 266(17) 11295-300.
Slilaty, S. N. and J. W. Little (1987). Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. Proceedings of the National Academy of Sciences of the United States of America 84(12) 3987-91.
Soong, B. W., S. Y. Hsieh, et al. (1994). Mapping of transcriptional start sites of the cea and cei genes of the ColE7 operon. Molecular & General Genetics 243(4) 477-81.
Soong, B. W., F. M. Lu, et al. (1992). Characterization of the cea gene of the ColE7 plasmid. Molecular & General Genetics 233(1-2) 177-83.
Sun, T. P. and R. E. Webster (1987). Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. Journal of Bacteriology 169(6) 2667-74.
Suziedlien, E., K. Suziedlis, et al. (1999). The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. Journal of Bacteriology 181(7) 2084-93.
Takayama, M., T. Ohyama, et al. (1994). Escherichia coli cad operon functions as a supplier of carbon dioxide. Molecular Microbiology 11(5) 913-8.
Tanabe, H., T. Masuda, et al. (1998). Molecular interaction between proteins involved in EvgAS signal transduction of Escherichia coli. Bioscience, Biotechnology, and Biochemistry 62(1) 78-82.
Taylor, R. K., M. N. Hall, et al. (1981). Identification of OmpR: a positive regulatory protein controlling expression of the major outer membrane matrix porin proteins of Escherichia coli K-12. Journal of Bacteriology 147(1) 255-8.
Tommassen, J. and B. Lugtenberg (1980). Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase. Journal of Bacteriology 143(1) 151-7.
Van_Melderen, L. and S. Gottesman (1999). Substrate sequestration by a proteolytically inactive Lon mutant. Proceedings of the National Academy of Sciences of the United States of America 96(11) 6064-71.
Vianney, A., M. M. Muller, et al. (1996). Characterization of the tol-pal region of Escherichia coli K-12: translational control of tolR expression by TolQ and identification of a new open reading frame downstream of pal encoding a periplasmic protein. Journal of Bacteriology 178(14) 4031-8.
Walker, G. C. (1984). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiological Reviews 48(1) 60-93.
Wallis, R., K. Y. Leung, et al. (1995). Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 2. Cognate and noncognate interactions that span the millimolar to femtomolar affinity range. Biochemistry 34(42) 13751-9.
Wallis, R., G. R. Moore, et al. (1995). Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 1. Diffusion-controlled association and femtomolar binding for the cognate complex. Biochemistry 34(42) 13743-50.
Wanner, B. L. and B. D. Chang (1987). The phoBR operon in Escherichia coli K-12. Journal of Bacteriology 169(12) 5569-74.
Watson, R., W. Rowsome, et al. (1981). Identification and characterization of Col plasmids from classical colicin E-producing strains. Journal of Bacteriology 147(2) 569-77.
Webster, R. E. (1991). The tol gene products and the import of macromolecules into Escherichia coli. Molecular Microbiology 5(5) 1005-11.
Wissenbach, U., S. Six, et al. (1995). A third periplasmic transport system for L-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Molecular Microbiology 17(4) 675-86.
Witkin, E. M. (1976). Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriological Reviews 40(4) 869-907.
Yamada, M., T. Miki, et al. (1982). Translocation of colicin E1 through cytoplasmic membrane of Escherichia coli. FEBS Letters 150(2) 465-8.
Yu, S., H. Ding, et al. (1999). Characterization of a phage specific to hemorrhagic Escherichia coli O157:H7 and disclosure of variations in host outer membrane protein ompC. 5(5) 370-82. Journal of Bacteriology 14
夏國強. (2000). 陽明大學生化所碩士論文:大腸桿菌素與胞膜間區蛋白質交互作用之研究.
李元馭. ( 2001). 陽明大學生化所碩士論文:影響 cei-mRNA 專一性切割因子的量化測定;大腸桿菌素胞膜移位有關之基因的轉錄表現.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳伯璋(民82),師範校院成立進修學院可行性之研究。教育研究資訊雙月刊,1(2),43-53。
2. 李隆盛(民89a),美國K-12年級的科技教育內容。生活科技教育月刊,33(6),2-8。
3. 李隆盛(民87b),高中實施「工程科技」的可能性。中學工藝教育月刊,31(5),2-7。
4. 李隆盛(民87a),MST取向的國中生活科技教材教法。生活科技教育月刊,31(10),2-8。
5. 蔡培村,〈終身學習教師的發展與培育〉,國立台灣教育資料館《教育資料集刊》24輯,台北;國立台灣教育資料館,民國88年。
6. 楊國賜,〈我國終身教育現況、檢討和未來展望〉,國立教育資料館編著,《教育資料集刊》24輯,台北:國立教育資料館,民國88年。
7. 王政彥,〈終身教育的理論基礎與建構〉,國立台灣教育資料館編著,《教育資料集刊》24輯,台北;國立台灣教育資料館,民國88年。
8. 魏炎順(民88),英國科技能力標準與課程對我國小學九年一貫「科技」課程改革的啟示。生活科技教育月刊,32(7),20-30。
9. 簡茂發(民88),多元化評量之理念與方法。教師天地,99,11-17。
10. 蔡東鐘(民88),澳洲中小學科技教育課程現況及其啟示。生活科技教育月刊,32(7),12-19。
11. 黃能堂(民85),由工程的觀點看科技素養(藍敏慧,翻譯)。中學工藝教育月刊,29(3),2-12。(原作出版於1996年)