跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周姜廷
研究生(外文):Chiang-Ting Chou
論文名稱:一氧化氮調控微膠細胞活化機制之研究-p38Mitogen-activatedProteinKinase路徑在乙型澱粉樣蛋白片段、神經節甘酯與酯多醣活化微膠細胞過程中之角色
論文名稱(外文):Mechanisms Involved in the Regulation of Microglia Activation by Nitric Oxide:Role of p38 Mitogen-activated Protein Kinase in the Activation of Microglia Induced by -amyloid Peptide, Gangliosides, and Lipopolysaccharide
指導教授:宋晏仁 老師蔡惠珍 老師
指導教授(外文):Yen-Jen SungHuey-Jen Tsay
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:87
中文關鍵詞:細菌內毒素脂多醣乙型澱粉樣蛋白片段神經節甘酯一氧化氮微膠細胞腫瘤壞死因子alpha
外文關鍵詞:LPSbeta-amyloid peptide fragment 25-35gangliosidesNitric oxidemicroglia cellTNF-alpha
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一氧化氮 (Nitric oxide; NO) 在神經系統中兼具毒殺與保護功能,然其在此二種功能間之調控機制,仍待釐清。在中樞神經系統內,多種細胞具製造NO之能力,其中星膠細胞及微膠細胞受發炎訊號刺激後可產生大量之NO。因此在以慢性發炎為一主要病理機序的退化性神經疾病中,NO在腦微環境中可能形成斷續性之高量積累,進而影響腦內細胞之功能。據此假設,本論文擬探討NO對腦內主要免疫細胞─微膠細胞─受不同來源之發炎訊號刺激後的反應之調控機制。
利用小鼠微膠細胞株BV-2為實驗模型,我們發現BV-2細胞可對一種血腦障蔽外之發炎原─細菌內毒素脂多醣 (LPS)─迅速反應而製造大量發炎細胞激素TNF-alpha,然而對於血腦障蔽內衍生之物質如艾茨海默症中常見之乙型澱粉樣蛋白片段 (beta-amyloid peptide fragment 25-35; Abeta25-35) 或甫被證實可引起beta-amyloid peptide凝集之一種受損傷細胞膜衍生物─神經節甘酯 (gangliosides) ─卻反應微弱。但是BV-2微膠細胞若先受NO (來自1 mM之sodium nitroprusside; SNP) 刺激30分鐘,則大幅增強對A25-35及gangliosides之反應,產生相當大量的TNF-alpha;而另一方面,NO卻顯著地抑制微膠細胞對LPS的反應,減少LPS誘發之TNF-alpha釋出。
進一步探討NO調控此二類(血腦障蔽內及血腦障蔽外)代表性刺激原之機制,發現NO可抑制LPS引起之NF-kappaB活化,卻加強beta-amyloid peptide fragment 25-35及gangliosides所引起之NF-kappaB活化。由於NF-kappaB活化與mitogen-activated protein kinase (MAPK)訊息傳導路徑有關,我們乃進一步探討NO對此路徑之影響,結果發現LPS、beta-amyloid peptide fragment 25-35及gangliosides均可不同程度地活化ERK、p38 MAPK及JNK三條路徑,但是NO祇對p38具明顯之調控,亦即NO抑制LPS引發之p38 MAPK活化,卻極明顯地加強了beta-amyloid peptide fragment 25-35及gangliosides所引發之p38 MAPK活化。由於加入p38 MAPK之抑制劑SB203580可以有效抑制LPSbeta25-35及gangliosides以及與NO共同作用所誘發之TNF-alpha產製及NF-kappaB活化,而加入ERK之抑制劑PD98059亦同樣可以阻斷上述藥劑或組合所誘發之TNF-alpha製造及NF-fappaB活化,顯示beta-amyloid peptide fragment 25-35、gangliosides及LPS活化NF-kappaB及引發TNF-alpha合成需要至少p38 MAPK及ERK之同時作用,唯NO之強化或抑制這些刺激原係透過p38 MAPK。至於JNK是否也絕對必要,有待進一步研究。
本研究結果對於NO之細胞毒殺或保護雙重效果,提供一可能之解釋模型,即NO可抑制血腦障蔽外侵入之刺激原,藉此可能保護腦內構造,另一方面卻無法鑑別血腦障蔽內衍生之刺激原的傷害性,而加強此類物質之致發炎反應,進而造成神經損傷。本研究結果若能在人類神經系統得以證實,將對腦部疾病之治療方針具高度參考價值。
Nitric oxide (NO) has been shown to be both neurotoxic and neuroprotective; however, mechanisms governing the switch between the two seemingly distinct effects remain to be elucidated. In the central nervous system, almost all cell types are capable of generating NO. The astroglia and microglia, in particular, can produce large amounts of NO in response to proinflammatory stimulation. Since chronic inflammation is characteristic of numerous neurodegenerative diseases, it is likely that NO may accumulate in pathological microenvironments to levels that can modulate neural cell functions. Therefore, the purpose of this study was to examine the role of NO in the regulation of microglia, the major immune effect cells in the central nervous system, in response to proinflammatory signals derived from various sources.
Using a murine microglia cell line, BV-2, we found that these cells released large amounts of tumor necrosis factor (TNF)-alpha within 6 h of stimulation by lipopolysaccharide (LPS, 1 g/ml), a proinflammatory stimulant from outside of the blood-brain barrier (hence, “extra-BBB”). In contrast, agents of the “intra-BBB” origin, such as Abeta25-35 (20 uM), a toxic beta-amyloid fragment containing amino acid residues 25-35 that is found in the brain of Alzheimer’s disease (AD) patients, and gangliosides (50 ug/ml), plasma membrane derivatives of damaged neurons that may initiate aggregation of Abeta in AD, had minimal effects on TNF-alpha release by BV-2 cells. However, exposure for 30 min of these cells to NO, as liberated by 1 mM sodium nitroprusside (SNP), markedly enhanced TNF-alpha production by BV-2 cells in response to Abeta25-35 or gangliosides stimulation. On the other hand, pre-exposure of SNP/NO significantly inhibited LPS-induced TNF-alpha production in BV-2 microglia cells.
To elucidate the mechanisms for the differential effects of NO on the two classes of stimulants, we measured NF-kappaB activation/translocation by using the electrophoresis mobility shift assay and activation of mitogen-activated protein kinases (MAPKs) by using immunoblotting assays. Parallel to the effects on TNF-alpha release, SNP/NO pretreatment inhibited NF-B translocation induced by LPS but enhanced that induced by Abeta25-35 and Gan. In the activation profile of MAPKs, while LPS, Abeta25-35 and gangliosides could activate, to different extents, phosphorylation of p42/p44 extracellular signal-regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK), the modulatory effect of NO was limited to p38 MAPK, i.e., SNP/NO pretreatment inhibited LPS-induced p38 MAPK activation but markedly enhanced Abeta25-35- and gangliosides-induced activation of p38 MAPK. However, SB203580 (an inhibitor of p38 MAPK) could inhibit TNF-alpha release and NF-B activation induced by LPS, Abeta25-35, Gan, and the combinatorial effects with NO and, on the other hand, PD98059 (an inhibitor of MEK1/ERK) could also block all of the above. This means that NF-kappaB activation and TNF-alpha production induced by Abeta25-35, Gan, and LPS required both p38 MAPK and ERK, but NO regulated only p38 MAPK. Our data could not exclude the involvement of JNK without further experiments.
The data presented in this study support a novel model for the mechanisms directing the protective and destructive effects of NO, i.e., NO protects neural cell from “extra-BBB” insults by inhibiting the signaling pathways, yet, on the other hand, may not be able to differentiate the detrimental potential of substances from “intra-BBB” sources thereby enhance the damaging effect. Our model may provide insights to the therapeutic strategy of neurodegenerative diseases given the differential regulatory effects of NO can be demonstrated in the human brain.

中文摘要i
ABSTRACTiii
LIST OF ABBREVIATIONSvi
ACKNOWLEDGEMENTSvii
BIOGRAPHICAL SKETCHix
CHAPTER 1 INTRODUCTION1
1.1The physiologic and pathologic roles of nitric oxide (NO) in the central nervous system1
1.1.1Biosynthesis and the effector functions of NO1
1.1.2Regulatory functions of NO3
1.1.3Dual/Differential effects of NO5
1.2.The role of lipopolysaccharide, -amyloid peptides, and gangliosides in the pathophysiology of the central nervous system8
1.2.1Lipopoplysaccharide (LPS) and brain injury8
1.2.2-Amyloid peptides (A) and Alzheimer's disease9
1.2.3Gangliosides and brain pathology10
1.3The role of microglia activation and MAPK activation in the pathophysiology of the central nervous system11
1.4Purposes and rationales of present research13
CHAPTER 2 MATERIALS AND METHODS14
2.1Reagents14
2.2Cell culture15
2.3Determination of TNF- Release15
2.4Measurement of NF-B Activation by Electrophoresis Mobility Shift Assay and Super-Shift Assay16
2.5Immunoblotting assay for MAPKs17
2.6Statistical Analysis19
CHAPTER 3 RESULTS20
3.1Differential effects of NO on LPS- vs. A25-35- and gangliosides-induced TNF- release from microglia20
3.2Differential effects of NO on NF-B translocation21
3.3Role of mitogen-activated protein kinases (MAPKs) in NO- regulated responses to LSP, A25-35, and gangliosides in microglia cells22
3.4Effect of NAC on NO-upregulated p38 MAPK activation24
CHAPTER 4 DISCUSSION26
4.1A novel model for the dual regulatory effects of NO on inflammatory responses of microglia cells26
4.2NO may differentially alter the pathophysiological roles of LPS, A25-35, and gangliosides in brain disorders27
4.3p38 MAPK serves as an essential target for NO to regulate microglia activation31
4.4Neuroprotective and neurotoxic effects of NO: Ramifications of p38-mediated dual regulatory effects of NO32
APPENDIX 1.ACKNOWLEDGEMENT FOR SPONSORSHIPS AND ASSISTANCE67
APPENDIX 2.COMPOSITION OF BUFFERS USED IN THIS STUDY68
REFERENCES72

ABD-EL-BASSET E. & FEDOROFF S. (1995) Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J.Neurosci.Res. 41, 222-237.
AHN N.G., WEIEL J.E., CHAN C.P. & KREBS E.G. (1990) Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinase from Swiss 3T3 cells. J.Biol.Chem. 265, 11487-11494.
ANDERSSON P.B., PERRY V.H. & GORDON S. (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48, 169-186.
ASSREUY J., CUNHA F.Q., LIEW F.Y. & MONCADA S. (1993) Feedback inhibition of nitric oxide synthase activity by nitric oxide. Br.J.Pharmacol. 108, 833-837.
BANKS W.A., KASTIN A.J., BARRERA C.M. & MANESS L.M. (1991) Lack of saturable transport across the blood-brain barrier in either direction for -amyloid1-28 (Alzheimer's disease protein). Brain Res.Bull. 27, 819-823.
BANKS W.A., KASTIN A.J., MANESS L.M., BANKS M.F., SHAYO M. & MCLAY R.N. (1997) Interactions of -amyloids with the blood-brain barrier. Ann.N.Y.Acad.Sci. 826, 190-199.
BECHER B., PRAT A. & ANTEL J.P. (2000) Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29, 293-304.
BEHR-ROUSSEL D., RUPIN A., SANSILVESTRI-MOREL P., FABIANI J.N. & VERBEUREN T.J. (2000) Histochemical evidence for inducible nitric oxide synthase in advanced but non-ruptured human atherosclerotic carotid arteries. Histochemical Journal 32, 41-51.
BHAT N.R., ZHANG P., LEE J.C. & HOGAN E.L. (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor- gene expression in endotoxin-stimulated primary glial cultures. J.Neurosci. 18, 1633-1641.
BICKEL U., GRAVE B., KANG Y.S., DEL REY A. & VOIGT K. (1998) No increase in blood-brain barrier permeability after intraperitoneal injection of endotoxin in the rat. J.Neuroimmunol. 85, 131-136.
BLASI E., BARLUZZI R., BOCCHINI V., MAZZOLLA R. & BISTONI F. (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J.Neuroimmunol. 27, 229-237.
BLENNOW K., WALLIN A., FREDMAN P., KARLSSON I., GOTTFRIES C.G. & SVENNERHOLM L. (1990) Blood-brain barrier disturbance in patients with Alzheimer's disease is related to vascular factors. Acta Neurol.Scand. 81, 323-326.
BOCCHINI V., ARTAULT J.C., REBEL G., DREYFUS, H & MASSARELLI R. (1988) Phagocytosis of polystyrene latex beads by rat brain microglia cell cultures is increased by treatment with gangliosides. Dev.Neurosci. 10, 270-276.
BOJE K.M. (1995) Cerebrovascular permeability changes during experimental meningitis in the rat. J.Pharmacol.Exp.Ther. 274, 1199-1203.
BOJE K.M. & LAKHMAN S.S. (2000) Nitric oxide redox species exert differential permeability effects on the blood-brain barrier. J.Pharmacol.Exp.Ther. 293, 545-550.
BOLANOS J.P. & ALMEIDA A. (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochem.Biophys.Acta 1411, 415-436.
BREDT D.S., HWANG P.M., GLATT C.E., LOWENSTEIN C., REED R.R. & SNYDER S.H. (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351, 714-718.
BROWNING D.D., MCSHANE M.P., MARTY C. & YE R.D. (2000) Nitric oxide activation of p38 mitogen-activated protein kinase in 293T fibroblasts requires cGMP-dependent protein kinase. J.Biol.Chem. 275, 2811-2816.
BURROUGHS M., CABELLOS C., PRASAD S. & TUOMANEN E. (1992) Bacterial components and the pathophysiology of injury to the blood-brain barrier: does cell wall add to the effects of endotoxin in gram-negative meningitis? J.Inf.Dis. 165 (Suppl 1), S82-S85
BUSTER B.L., WEINTROB A.C., TOWNSEND G.C. & SCHELD W.M. (1995) Potential role of nitric oxide in the pathophysiology of experimental bacterial meningitis in rats. Infection & Immunity 63, 3835-3839.
CAMMER W. & ZHANG H. (1996) Ganglioside GD3 in radial glia and astrocytes in situ in brains of young and adult mice. J.Neurosci.Res. 46, 18-23.
CANO E. & MAHADEVAN L.C. (1995) Parallel signal processing among mammalian MAPKs. Trends.Biochem.Sci. 20, 117-122.
CHANG R.C., HUDSON P., WILSON B., LIU B., ABEL H., HEMPERLY J. & HONG J.S. (2000) Immune modulatory effects of neural cell adhesion molecules on lipopolysaccharide-induced nitric oxide production by cultured glia. Brain Res. (Mol. Brain Res. 81), 197-201.
CHARTIER-HARLIN M.C., CRAWFORD F., HOULDEN, H, WARREN A., HUGHES D., FIDANI L., GOATE A., ROSSOR M., ROQUES P. & HARDY J. (1991) Early-onset Alzheimer's disease caused by mutations at codon 717 of the -amyloid precursor protein gene. Nature 353, 844-846.
CHIU J.J., WUNG B.S., HSIEH H.J., LO L.W. & WANG D.L. (1999) Nitric oxide regulates shear stress-induced early growth response-1. Expression via the extracellular signal-regulated kinase pathway in endothelial cells. Circulation Research 85, 238-246.
CHIUEH C.C. (1999) Neuroprotective properties of nitric oxide. Ann.N.Y.Acad.Sci. 890, 301-311.
CHOO-SMITH L.P., GARZON-RODRIGUEZ W., GLABE C.G. & SUREWICZ W.K. (1997) Acceleration of amyloid fibril formation by specific binding of A1-40 peptide to ganglioside-containing membrane vesicles. J.Biol.Chem. 272, 22987-22990.
CLANCY R., LESZCZYNSKA J., AMIN A., LEVARTOVSKY D. & ABRAMSON S.B. (1995) Nitric oxide stimulates ADP ribosylation of actin in association with the inhibition of actin polymerization in human neutrophils. J.Leukoc.Biol. 58, 196-202.
COLASANTI M., PERSICHINI T., MENEGAZZI M., MARIOTTO S., GIORDANO E., CALDARERA C.M., SOGOS V., LAURO G.M. & SUZUKI H. (1995) Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J.Biol.Chem. 270, 26731-26733.
COMBS C.K., JOHNSON D.E., CANNADY S.B., LEHMAN T.M. & LANDRETH G.E. (1999) Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of -amyloid and prion proteins. J.Neurosci. 19, 928-939.
DALKARA T. & MOSKOWITZ M.A. (1997) Neurotoxic and neuroprotective roles of nitric oxide in cerebral ischaemia. International Review of Neurobiology 40, 319-336.
DEL REY A., RANDOLF A., PITOSSI F., ROGAUSCH H. & BESEDOVSKY H.O. (2000) Not all peripheral immune stimuli that activate the HPA axis induce proinflammatory cytokine gene expression in the hypothalamus. Ann.N.Y.Acad.Sci. 917, 169-174.
DELUDE R.L., FENTON M.J., SAVEDRA R., Jr., PERERA P.Y., VOGEL S.N., THIERINGER R. & GOLENBOCK D.T. (1994) CD14-mediated translocation of nuclear factor-B induced by lipopolysaccharide does not require tyrosine kinase activity. J.Biol.Chem. 269, 22253-22260.
DERRY D.M. & WOLFE L.S. (1967) Gangliosides in isolated neurons and glial cells. Science 158, 1450-1452.
DIMMELER S. & BRUNE B. (1993) Nitric oxide preferentially stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase compared to alcohol or lactate dehydrogenase. FEBS Lett. 315, 21-24.
DOWNEN M., MUDD L., ROBACK J.D., PALFREY H.C. & WAINER B.H. (1993) Early nerve growth factor-induced events in developing rat septal neurons. Brain Res. (Dev.Brain Res.) 74, 1-13.
DREYFUS H., GUEROLD B., FREYSZ L. & HICKS D. (1997) Successive isolation and separation of the major lipid fractions including gangliosides from single biological samples. Anal.Biochem. 249, 67-78.
ELMQUIST J.K., BREDER C.D., SHERIN J.E., SCAMMELL T.E., HICKEY W.F., DEWITT D. & SAPER C.B. (1997) Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J.Comp.Neurol. 381, 119-129.
FERNANDEZ-TOME P., LIZASOAIN I., LEZA J.C., LORENZO P. & MORO M.A. (1999) Neuroprotective effects of DETA-NONOate, a nitric oxide donor, on hydrogen peroxide-induced neurotoxicity in cortical neurones. Neuropharmacology 38, 1307-1315.
FONTANA A., BOSSHARD R., DAHINDEN C., GROB P. & GRIEDER A. (1981) Glia cell response to bacterial lipopolysaccharide: effect on nucleotide synthesis, its genetic control and definition of the active principle. J.Neuroimmunol. 1, 343-352.
FUKUDA M., GOTOH Y., TACHIBANA T., DELL K., HATTORI S., YONEDA Y. & NISHIDA (1995) Induction of neurite outgrowth by MAP kinase in PC12 cells. Oncogene 11, 239-244.
GARTHWAITE J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. TINS 14, 60-67.
GEBICKE-HAERTER P.J., VAN CALKER D., NORENBERG W. & ILLES P. (1996) Molecular mechanisms of microglial activation. A. Implications for regeneration and neurodegenerative diseases. Neurochem.Int. 29, 1-12.
GERGEL D. & CEDERBAUM A.I. (1996) Inhibition of the catalytic activity of alcohol dehydrogenase by nitric oxide is associated with S nitrosylation and the release of zinc. Biochemistry 35, 16186-16194.
GOATE A., CHARTIER-HARLIN M.C., MULLAN M., BROWN J., CRAWFORD F., FIDANI L., GIUFFRA L., HAYNES A., IRVING N. & JAMES L. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704-706.
GOEDERT M., SISODIA S.S. & PRICE D.L. (1991) Neurofibrillary tangles and -amyloid deposits in Alzheimer's disease. Current Opinion in Neurobiology 1, 441-447.
GORDON S. (1986) Biology of the macrophage. J.Cell Sci. [Suppl.] 4, 267
GRAEBER M.B. & STREIT W.J. (1990) Microglia: immune network in the CNS. Brain Pathol. 1, 2-5.
GRATSA A., ROOPRAI H.K., ROGERS J.P., MARTIN K.K. & PILKINGTON G.J. (1997) Correlation of expression of NCAM and GD3 ganglioside to motile behaviour in neoplastic glia. Anticancer Research 17, 4111-4117.
GRUNBLATT E., MANDEL S. & YOUDIM M.B. (2000) MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson's disease: neuroprotective strategies. J.Neurol. 247 (Suppl 2), II95-102.
HAASS C. & DE STROOPER B. (1999) The presenilins in Alzheimer's disease--proteolysis holds the key. Science 286, 916-919.
HIBBS Jr.J.B., TAINTOR R.R. & VAVRIN Z. (1987) Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473-476.
HICKS D., GUEROLD B. & DREYFUS H. (1996) Stimulation of endogenous ganglioside metabolism by neurotrophic growth factors in cultured retinal Müller glia. Glia 16, 316-324.
HINSON J.P., KAPAS S. & CAMERON L.A. (1996) Differential effects of endogenous and exogenous nitric oxide on the release of endothelin-1 from the intact perfused rat adrenal gland in situ. FEBS Lett. 379, 7-10.
INGRAM A.J., JAMES L., LY H., THAI K., CAI L. & SCHOLEY J.W. (2000a) Nitric oxide modulates stretch activation of mitogen-activated protein kinases in mesangial cells. Kidney Int. 58, 1067-1077.
INGRAM A.J., JAMES L., THAI K., LY H., CAI L. & SCHOLEY J.W. (2000b) Nitric oxide modulates mechanical strain-induced activation of p38 MAPK in mesangial cells. Am.J.Physiol.Ren.Flu.Elc.Physiol 279, F243-F251
JAWOROWICZ D.J., Jr., KORYTKO P.J., SINGH-LAKHMAN S. & BOJE K.M. (1998) Nitric oxide and prostaglandin E2 formation parallels blood-brain barrier disruption in an experimental rat model of bacterial meningitis. Brain Res.Bull. 46, 541-546.
JEA J.C., LIU T.C., WANG S.Y. & SUNG Y.J. (1998) Nitric oxide enhances the growth of U937 human leukemic cells through a cyclooxygenase-mediated pathway. J.Leukoc.Biol. 64, 451-458.
JESSELL T.M. & KANDEL E.R. (1993) Synaptic transmission: A bidirectional and self-moodifiable from of cell-cell communication. Cell 72, 1-30.
KAKIO A., NISHIMOTO S., YANAGISAWA K., KOZUTSUMI Y. & MATSUZAKI K. (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid -protein, an endogenous seed for Alzheimer amyloid. J.Biol.Chem. 276, 24985-24990.
KAMATA H., TANAKA C., YAGISAWA H., MATSUDA S., GOTOH Y., NISHIDA E. & HIRATA H. (1996) Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J.Biol.Chem. 271, 33018-33025.
KELLER A.D. & MANIATIS T. (1991) Identification and characterization of a novel repressor of -interferon gene expression. Gene.Dev. 5, 868-879.
KEREZOUDIS N.P., OLGART L. & EDWALL L. (1993) Differential effects of nitric oxide synthesis inhibition on basal blood flow and antidromic vasodilation in rat oral tissues. Eur.J.Pharmacol. 241, 209-219.
KIPRIANOVA I., SCHWAB S., FANDREY J. & SPRANGER M. (1997) Suppression of the oxidative burst in murine microglia by nitric oxide. Neurosci.Lett. 226, 75-78.
KLOSS C.U., BOHATSCHEK M., KREUTZBERG G.W. & RAIVICH G. (2001) Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp.Neurol. 168, 32-46.
KNIGGE U., KJAER A., JORGENSEN H., GARBARG M., ROSS C., ROULEAU A. & WARBERG J. (1994) Role of hypothalamic histaminergic neurons in mediation of ACTH and -endorphin responses to LPS endotoxin in vivo. Neuroendocrinology 60, 243-251.
KOHUTNICKA M., LEWANDOWSKA E., KURKOWSKA-JASTRZEBSKA I., CZLONKOWSKI A. & CZLONKOWSKA A. (1998) Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39, 167-180.
KOTANI M., KAWASHIMA I., OZAWA H., TERASHIMA T. & TAI T. (1993) Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology 3, 137-146.
KOWALL N.W., MCKEE A.C., YANKNER B.A., BEAL M.F. & . (1992) In vivo neurotoxicity of -amyloid [1-40] and the 25-35 fragment. Neurobiol.Aging 13, 537-542.
KUHN D.M. & ARTHUR R.E.J. (1996) Inactivation of brain tryptophan hydroxylase by nitric oxide. J.Neurochem. 67, 1072-1077.
LAFLAMME N., LACROIX S. & RIVEST S. (1999) An essential role of interleukin-1 in mediating NF-B activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J.Neurosci. 19, 10923-10930.
LAFLAMME N. & RIVEST S. (1999) Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor B  within specific cellular populations of the rat brain. J.Neurochem. 73, 309-321.
LAFLAMME N. & RIVEST S. (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J. 15, 155-163.
LANDER H.M., HAJJAR D.P., HEMPSTEAD B.L., MIRZA U.A., CHAIT B.T., CAMPBELL S. & QUILLIAM L.A. (1997) A molecular redox switch on p21 ras. Structural basis for the nitric oxide-p21ras interaction. J.Biol.Chem. 272, 4323-4326.
LANDER H.M., JACOVINA A.T., DAVIS R.J. & TAURAS J.M. (1996) Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J.Biol.Chem. 271, 19705-19709.
LANDER H.M., OGISTE J.S., PEARCE S.F., LEVI R. & NOVOGRODSKY A. (1995) Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J.Biol.Chem. 270, 7017-7020.
LIPTON S.A., CHOI Y.B., PAN Z.H., LEI S.Z., CHEN H.S., SUCHER N.J., LOSCALZO J., SINGEL D.J. & STAMLER J.S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626-632.
LIPTON S.A., SINGEL D.J. & STAMLER J.S. (1994) Neuroprotective and neurodestructive effects of nitric oxide and redox congeners. Ann.N.Y.Acad.Sci. 738, 382-387.
MABUCHI T., KITAGAWA K., OHTSUKI T., KUWABARA K., YAGITA Y., YANAGIHARA T., HORI M. & MATSUMOTO M. (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31, 1735-1743.
MAIESE K., BONIECE I.R., SKURAT K. & WAGNER J.A. (1993) Protein kinases modulate the sensitivity of hippocampal neurons to nitric oxide toxicity and anoxia. J.Neurosci.Res. 36, 77-87.
MARX F., BLASKO I. & GRUBECK-LOEBENSTEIN B. (1999) Mechanisms of immune regulation in Alzheimer's disease: a viewpoint. Arch.Immunol.Ther.Exp. 47, 205-209.
MATTHEWS J.R., BOTTING C.H., PANICO M., MORRIS H.R. & HAY R.T. (1996) Inhibition of NF-B DNA binding by nitric oxide. Nucleic.Acids.Res. 24, 2236-2242.
MAYHAN W.G. (1998) Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase. Brain Res. 792, 353-357.
MCDONALD B., REEP B., LAPETINA E.G. & MOLINA y.V.L. (1993) Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc.Natl.Acad.Sci.USA 90, 11122-11126.
MCDONALD D.R., BAMBERGER M.E., COMBS C.K. & LANDRETH G.E. (1998) -Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J.Neurosci. 18, 4451-4460.
MCGEER P.L., KAWAMATA T., WALKER D.G., AKIYAMA H., TOOYAMA I. & MCGEER E.G. (1993) Microglia in degenerative neurological disease. Glia 7, 84-92.
MCGEER P.L. & MCGEER E.G. (2000) Autotoxicity and Alzheimer disease. Arch.Neurol. 57, 789-790.
MEDA L., CASSATELLA M.A., SZENDREI G.I., OTVOS L., Jr., BARON P., VILLALBA M., FERRARI D. & ROSSI F. (1995) Activation of microglial cells by -amyloid protein and interferon-. Nature 374, 647-650.
MEUILLET E., CREMEL G., DREYFUS H. & HICKS D. (1996) Differential modulation of basic fibroblast and epidermal growth factor receptor activation by ganglioside GM3 in cultured retinal Muller glia. Glia 17, 206-216.
MILES P.R., BOWMAN L., RENGASAMY A. & HUFFMAN L. (1998) Constitutive nitric oxide production by rat alveolar macrophages. Am.J.Physiol. 274, L360-L368
MITROVIC B., IGNARRO L.J., MONTESTRUQUE S., SMOLL A., MERRILL & JE. (1994) Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience 61, 575-585.
MOLINA Y VEDIA L., MCDONALD B., REEP B., BRUNE B., DI SILVIO M., BILLIAR T.R. & LAPETINA E.G. (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J.Biol.Chem. 267, 24929-24932.
MOLINA Y VEDIA L., MCDONALD B., REEP B., BRUNE B., DISILVIO M., BILLIAR T.R. & LAPETINA E.G. (1992) Nitric oxide-induced S-nitrosylsation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J.Biol.Chem. 267, 24929-24932.
MONCADA S. & PALMER R.M.J. (1991) L-Arginine:nitric oxide pathway. Int.Soc.Appl.Cardiovasc.Biol. 2, 139-151.
MONCADA S., PALMER R.M.J. & HIGGS E.A. (1991a) Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol.Rev. 43, 109-142.
MONCADA S., PALMER R.M.J. & HIGGS E.A. (1991b) Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol.Rev. 43, 109-142.
MOTTA A.B., ESTEVEZ A., TOGNETTI T., GIMENO M.A. & FRANCHI A.M. (2001) Dual effects of nitric oxide in functional and regressing rat corpus luteum. Mol.Human Reprod. 7, 43-47.
MURPHY G.M., Jr., YANG L. & CORDELL B. (1998) Macrophage colony-stimulating factor augments -amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J.Biol.Chem. 273, 20967-20971.
NAKAI M., HOJO K., TANIGUCHI T., TERASHIMA A., KAWAMATA T., HASHIMOTO T., MAEDA K. & TANAKA C. (1998) PKC and tyrosine kinase involvement in amyloid 25-35-induced chemotaxis of microglia. Neuroreport 9, 3467-3470.
NARA K., KONNO D., UCHIDA J., KIUCHI Y. & OGUCHI K. (1999) Protective effect of nitric oxide against iron-induced neuronal damage. J.Neural Transm. 106, 835-848.
NEDELKOSKA L. & BENJAMINS J.A. (1998) Binding of cholera toxin B subunit: a surface marker for murine microglia but not oligodendrocytes or astrocytes. J.Neurosci.Res. 53, 605-612.
O'DELL T.J., HAWKINS R.D., KANDEL E.R. & ARANCIO O. (1991) Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger. Proc.Natl.Acad.Sci.USA 88, 11285-11289.
OGISO M., OHTA M., HARADA Y. & HIRANO S. (1992) Neuronal ganglioside increases dependent on the neuron--glia interaction in primary culture. J.Neurochem. 59, 636-643.
PALLER A.S., ARNSMEIER S.L., FISHER G.J., YU & QC. (1995) Ganglioside GT1b induces keratinocyte differentiation without activating protein kinase C. Exp.Cell Res. 217, 118-124.
PARK C.S., KRISHNA G., AHN M.S., KANG J.H., CHUNG W.G., KIM D.J., HWANG H.K., LEE, JN, PAIK S.G. & CHA Y.N. (2000) Differential and constitutive expression of neuronal, inducible, and endothelial nitric oxide synthase mRNAs and proteins in pathologically normal human tissues. Nitric Oxide 4, 459-471.
PETROV T., PAGE A.B., OWEN C.R. & RAFOLS J.A. (2000) Expression of the inducible nitric oxide synthase in distinct cellular types after traumatic brain injury: an in situ hybridization and immunocytochemical study. Acta Neuropathol. 100, 196-204.
PUENOVA N. & ENIKOLOPOV G. (1993) Amplification of calcium-induced gene transcription by nitric oxide in neuronal cells. Nature 364, 450-453.
PYO H., JOE E., JUNG S., LEE S.H. & JOU I. (1999) Gangliosides activate cultured rat brain microglia. J.Biol.Chem. 274, 34584-34589.
PYO H., JOU I., JUNG S., HONG S. & JOE E.H. (1998) Mitogen-activated protein kinases activated by lipopolysaccharide and -amyloid in cultured rat microglia. Neuroreport 9, 871-874.
QUAN N., STERN E.L., WHITESIDE M.B. & HERKENHAM M. (1999) Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J.Neuroimmunol. 93, 72-80.
REYES T.M., FABRY Z. & COE C.L. (1999) Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res. 851, 215-220.
RYU J., PYO H., JOU I. & JOE E. (2000) Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J.Biol.Chem. 275, 29955-29959.
SALTER M., KNOWLES R.G. & MONCADA S. (1991) Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases. FEBS Lett. 291, 145-149.
SALVEMINI D., MISKO T.P., MASFERRER J.L., SEIBERT K., CURRIE M.G. & NEEDLEMAN P. (1993) Nitric oxide activates cyclooxygenase enzymes. Proc.Natl.Acad.Sci.USA 90, 7240-7244.
SAWADA M., SUZUMURA A., YAMAMOTO H. & MARUNOUCHI T. (1990) Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res. 509, 119-124.
SCHMIDT H.H. & WALTER U. (1994) NO at work. Cell 78, 919-925.
SELKOE D.J. (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Annual Review of Cell Biology 10, 373-403.
SELKOE D.J. (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol.Rev 81, 741-766.
SHAMI P.J. & WEINBERG J.B. (1996) Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood 87, 977-982.
SIMON D.I., MULLINS M.E., JIA L., GASTON B., SINGEL D.J. & STAMLER J.S. (1996) Polynitrosylated proteins: characterization, bioactivity, and functional consequences. Proc.Natl.Acad.Sci.USA 93, 4736-4741.
SINHA S., ANDERSON J., JOHN V., MCCONLOGUE L., BASI G., THORSETT E., SCHENK & D. (2000) Recent advances in the understanding of the processing of APP to amyloid peptide. Ann.N.Y.Acad.Sci. 920, 206-208.
SINHA S. & LIEBERBURG I. (1999) Cellular mechanisms of -amyloid production and secretion. Proc.Natl.Acad.Sci.USA 96, 11049-11053.
SO H.S., PARK R.K., KIM M.S., LEE S.R., JUNG B.H., CHUNG S.Y., JUN C.D. & CHUNG H.T. (1998) Nitric oxide inhibits c-Jun N-terminal kinase 2 (JNK2) via S-nitrosylation. Biochem.Biophys.Res.Commun. 247, 809-813.
SOBUE G., TAKI T., YASUDA T. & MITSUMA T. (1988) Gangliosides modulate Schwann cell proliferation and morphology. Brain Res. 474, 287-295.
STADLER J., HARBRECHT B.G., DI S.M., CURRAN R.D., JORDAN M.L., SIMMONS R.L. & BILLIAR T.R. (1993) Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J.Leukoc.Biol. 53, 165-172.
STAMLER J.S., SINGEL D.J. & LOSCALZO J. (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258, 1898-1902.
STOHWASSER R., GIESEBRECHT J., KRAFT R., MULLER E.C., HAUSLER K.G., KETTENMANN H., HANISCH U.K. & KLOETZEL P.M. (2000) Biochemical analysis of proteasomes from mouse microglia: induction of immunoproteasomes by interferon-gamma and lipopolysaccharide. Glia 29, 355-365.
SUGAYA K., CHOUINARD M.L. & MCKINNEY M. (1997) Induction of manganese superoxide dismutase in BV-2 microglial cells. Neuroreport 8, 3547-3551.
SWIATKOWSKA M., CIERNIEWSKA-CIESLAK A., PAWLOWSKA Z. & CIERNIEWSKI C.S. (2000) Dual regulatory effects of nitric oxide on plasminogen activator inhibitor type 1 expression in endothelial cells. Eur.J.Biochem. 267, 1001-1007.
TAKEDA Y., TASHIMA M., TAKAHASHI A., UCHIYAMA T. & OKAZAKI T. (1999) Ceramide Generation in Nitric Oxide-induced Apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J.Biol.Chem. 274, 10654-10660.
THOMAS W.E. (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res.Rev. 17, 61-74.
TUNKEL A.R. & SCHELD W.M. (1993) Pathogenesis and pathophysiology of bacterial meningitis. Clin.Microbiol.Rev. 6, 118-136.
VIDWANS A.S., KIM S., COFFIN D.O., WINK D.A. & HEWETT S.J. (1999) Analysis of the neuroprotective effects of various nitric oxide donor compounds in murine mixed cortical cell culture. J.Neurochem. 72, 1843-1852.
WANG J., ROUSSEAU D.L., ABU-SOUD H.M. & STUEHR D.J. (1994) Heme coordination of NO in NO synthase. Proc.Natl.Acad.Sci.USA 91, 10512-10516.
WILCOX J.N., SUBRAMANIAN R.R., SUNDELL C.L., TRACEY W.R., POLLOCK J.S., HARRISON, DG & MARSDEN P.A. (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler.Thrombo.Vasc.Biol. 17, 2479-2488.
WOLSWIJK G. (1994) GD3+ cells in the adult rat optic nerve are ramified microglia rather than O-2A adult progenitor cells. Glia 10, 244-249.
XU M., NG Y.K. & LEONG S.K. (2000) Neuroprotective and neurodestructive functions of nitric oxide after spinal cord hemisection. Exp.Neurol. 161, 472-480.
YAMAGUCHI S., MIYAZAKI Y., OKA S. & YANO I. (1997) Stimulatory effect of gangliosides on phagocytosis, phagosome-lysosome fusion, and intracellular signal transduction system by human polymorphonuclear leukocytes. Glycoconj.J. 14, 707-714.
ZHANG J. & RIVEST S. (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur.J.Neurosci. 11, 2651-2668.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 內毒素誘發微膠細胞第二型一氧化氮合成酶表現之訊息傳導機制中cyclicAMP-dependentProteinKinase、ExtracellularSignal-regulatedKinase(ERK)及p38Mitogen-activatedProteinKinase(p38MAPK)路徑之角色:ERK及p38MAPK活化強度及時相之意義
2. β-Lapachone作用於人類骨肉瘤細胞株之毒性
3. 藉由海人草酸誘發產生的細胞興奮性毒性探討海馬體神經細胞與小神經膠細胞之間的交互作用:體外研究
4. 丹參酚酸B對氧化低密度脂蛋白處理人類主動脈內皮細胞和餵食高膽固醇飼料及去內皮處理兔子之作用
5. 探討丹參酚酸B對氧化低密度脂蛋白誘導人類主動脈平滑肌細胞或ApoE缺陷小鼠的細胞激素之表現影響
6. CyclicAMP對人類眼窩纖維母細胞細胞骨架的作用及局部黏著的影響
7. 建立可以產生B型肝炎病毒cccDNA的細胞株且應用之
8. B型肝炎病毒核心蛋白和聚合酵素融合蛋白的特性研究及應用
9. 一個由剪接RNA產生之B型肝炎病毒新的結構蛋白-聚合脢;和表面抗原融合蛋白之研究
10. 探討由Paroxetine與Maprotiline在人類骨癌細胞與小鼠神經瘤母細胞所誘發細胞凋亡中Caspase-3活化的機轉
11. 檳榔鹼衍生物能致活牛蛙交感神經節細胞M1、M3型毒蕈素受體而產生去極化作用
12. 生物可降解性聚乳酸高分子之合成與降解性質探討
13. 自體螢光光譜與影像技術應用於癌組織診斷
14. 氧氣/二氧化碳效應在功能性磁振影像的研究
15. 潤滑液及Gamma射線處理對人工關節元件摩擦及溫度上升效應之探討