跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 20:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志賢
研究生(外文):William J.Huang, M.D.
論文名稱:高泌乳素血症導致雄鼠睪酮分泌低常之機制
論文名稱(外文):Mechanisms of Hyperprolactinemia-Induced Hypogonadism
指導教授:王錫崗王錫崗引用關係張心湜
指導教授(外文):Paulus S. Wang, Ph. D.Luke S. Chang, M.D.
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:中文
論文頁數:141
中文關鍵詞:高泌乳素血症睪酮分泌低常泌乳素萊氏細胞睪酮
外文關鍵詞:HyperprolactinemiaHypogonadismProlactinLeydig CellsTestosterone
相關次數:
  • 被引用被引用:1
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知高泌乳素血症是引發哺乳類動物性功能障礙或不孕症的原因之一,主因性腺睪酮分泌功能不佳所致。過去對其致病機轉的解釋一直圍繞在下視丘-腦下腺軸系引起的荷爾蒙分泌失調。但是這種單一的解釋並不完美,常見矛盾例証。對於泌乳素如何直接干擾睪酮之分泌,論述不多。本研究論文乃利用異體腦下腺移植於腎包膜下的方式建立高泌乳素血症的大鼠動物模式,觀察高泌乳素血症大鼠於活體時接受人絨毛膜性腺促素(hCG)刺激睪酮分泌異常的情形。分離離體之睪丸間質細胞(TIC),觀察人絨毛膜性腺促素,cAMP生成相關酵素,或睪酮生合成所需各階段前驅物刺激後睪酮釋放的情形。更進一步,再從睪丸間質細胞中純化分離萊氏細胞進行與睪丸間質細胞培養類似的刺激,比較其睪酮釋放的變化。另一方面更將睪丸間質巨噬細胞(TIM)分離出,觀察其分泌出的腫瘤壞死因子a(TNF-a)在高泌乳素血症誘發睪酮分泌障礙中所扮演的角色。
結果顯示,由異體腦下腺前葉移植誘發之高泌乳素血症雄鼠,於活體時經人絨毛膜性腺促素刺激出現睪酮反應不足的現象。睪丸間質細胞經人絨毛膜性腺促素、泌乳素、8-Br-cAMP或睪酮生合成前驅物的刺激,睪酮的釋放,以高泌乳素血症組遠低於對照組者。然而,大鼠萊氏細胞培養接受類似刺激後,睪酮的釋放卻出現與間質細胞培養相反的結果,即高泌乳素血症組睪酮之分泌遠高於對照組者。暗示萊氏細胞本身睪酮生合成機制會因高泌乳素血症而強化。由於睪丸間質細胞與萊氏細胞培養間最大的差別在間質細胞中存在為數不少的巨噬細胞。巨噬細胞可以分泌以腫瘤壞死因子a為主的細胞激素以影響周遭細胞的功能。高泌乳素血症組的間質細胞培養液中可以測得較多的腫瘤壞死因子a,以腫瘤壞死因子a外加於萊氏細胞培養後,即出現隨劑量增加的睪酮分泌抑制效應。
以上的結果,得到以下的結論與推論:(1)高泌乳素血症誘發的睪酮分泌不足可以在動物模式上重現。(2)高泌乳素血症誘發的睪酮分泌不足可以在離體睪丸間質細胞模式再現。(3)高泌乳素血症動物其離體萊氏細胞睪酮生合成機制其實並未受到抑制,相反的,其表現是增強的。(4)睪丸內除了萊氏細胞外的某種間質細胞可能掌握了解開此機制秘密的鎖鑰。(5)導致高泌乳素血症誘發睪酮分泌不足的原因,必須探究睪丸間質巨噬細胞的角色。巨噬細胞的主要細胞激素(腫瘤壞死因子a)可以在培養液中測得,且在高泌乳素血症組有較高的分泌量,而巨噬細胞很可能就是扮演這個角色的細胞。
以上的結論及推論除了為泌乳素影響睪丸、睪酮分泌提供重要且有意義的資訊外,並且也開啟了睪丸間質巨噬細胞對生殖內分泌功能上研究的大門。
Hyperprolactinemia (hyperPRL) might induce sexual impotence or infertility in male mammals. The phenomenon is because of the appearance of hypogonadism. The mechanism of hyperPRL-induced hypogonadism has been explained by a dysfunction of hypothalamus-pituitary axis. However, this explanation is not satisfied in all circumstances. A direct effect of prolactin (PRL) to testicular steroidogenesis has been proposed. How PRL influence, in a direct way, the testicular testosterone (T) release is still elusive. The present study was to explore the detailed mechanisms regarding hyperPRL effects on the testicular T release.
The hyperPRL rat model was conducted by allografting anterior pituitary (AP) glands to the renal sub-capsular space. The in vivo study was designed to confirm a decreased T response after human chorionic gonadotropin (hCG) stimulation in the hyperPRL animals. The in vitro T responses after the stimulation of hCG, PRL, cyclic adenosine mono-phosphate (cAMP) related enzymes and steroidogenic precursors were observed in both testicular interstitial cells (TIC) and Leydig cells stimulations. The testicular interstitial macrophages (TIM) were also isolated to characterize the role of TIM-released tumor necrosis factor-a (TNF-a) in hyperPRL-induced hypogonadism. The concentrations of T, PRL and cAMP were measured by radioimmunoassay (RIA). The measurement of TNF-a was by enzyme-linked immuno-sorbent assay (ELISA). The data was analyzed by the analysis of variance (ANOVA) and Duncan''s multiple range tests.
The results indicated that the AP-allografting-induced hyperPRL decreased T response to the in vivo challenge of hCG. In vitro TIC cultures showed that the hyperPRL groups had a significantly lower T release after challenge of hCG, PRL, 8-Br-cAMP or steroidogenic precursors. While in the in vitro Leydig cells incubations, the hyperPRL exhibited an opposite results after similar challenge as in the TIC, a tremendously higher T release was observed in the hyperPRL group than in the control. These findings indicated that the effects of high PRL levels boosted the testosterone biosynthesis in Leydig cells. On account of the major difference between TIC and Leydig cell cultures is the presence of TIM. TIM is the major source of TNF-a, which regulates the functions of neighboring cells. TNF-a could be detected in the TIC medium, in particularly to higher levels in the medium of hyperPRL groups. Incubation of Leydig cells with TNF-a created a dose-dependent inhibition of T release.
These results suggest that (1) hyperPRL-induced hypogonadism has been demonstrated in the AP-grafted rats and the in vitro TIC culture; and (2) the T biosynthesis machinery of the Leydig cells in hyperPRL rats was not weakened, to the contrary, the expression of T biosynthesis related protein or enzyme was enhanced in the Leydig cells in the hyperPRL animals. This picture echoes the theory that PRL being a trophic hormone to testicular development. Certain TIC (e.g. TIM) other than Leydig cells must play a role in suppressing the T release by the Leydig cells.
This study not only provided useful information on how PRL affecting testicular T release, but also opened a new door to the research of TIM in hypogonadism.
名詞中英文對照………………………………………………………… 7
中文摘要………………………………………………………………… 8
英文摘要………………………………………………………………… 10
第一章 緒論……………………………………………………………… 12
一 概述 …………………………………………………………………… 13
二 泌乳素………………………………………………………………… 14
(一) 泌乳素簡介……………………………………………………… 14
(二) 泌乳素的分泌與調節…………………………………………… 14
(三) 泌乳素的功能…………………………………………………… 16
(四) 高泌乳素血症…………………………………………………… 17
(五) 高泌乳素血症對下視丘-腦下腺-睪丸軸系的影響………… 20
三睪酮…………………………………………………………………… 22
(一) 雄性激素與睪酮………………………………………………… 22
(二) 睪酮的分泌細胞………………………………………………… 22
(三) 萊氏細胞的調節………………………………………………… 22
(四) 睪酮的合成……………………………………………………… 23
(五) 黃體促素與人絨毛膜性腺促素………………………………… 24
四目的與假說…………………………………………………………… 26
第二章 動物模式的建立………………………………………………… 33
一高泌乳素血症的雄性大鼠動物模式………………………………… 34
二以異體腦下腺前葉移植腎包膜下的方式誘發高泌乳素
血症的方法………………………………………………………… 35
(一) 摘取捐贈鼠腦下腺前葉………………………………………… 35
(二) 接受植入的步驟………………………………………………… 35
(三) 植入成果的檢驗………………………………………………… 35
三 腦下腺前葉植入誘發之高泌乳素血症大鼠其血中激素基礎值的測定 37
(一) 血漿基礎泌乳素濃度測定……………………………………… 37
(二) 血漿基礎性促素(gonadotropins)濃度測定…………………… 37
第三章 激素及生化物質之檢測與分析……………………………… 43
一 泌乳素之放射免疫測定…………………………………………… 44
二 睪酮之放射免疫測定……………………………………………… 45
三 黃體促素之放射免疫測定………………………………………… 47
四 濾泡促素之放射免疫測定………………………………………… 48
五 環單磷酸腺甘(cAMP) 之放射免疫測定…………………………… 49
第四章 高泌乳素血症對活體雄鼠睪酮分泌的效應………………… 51
一 緒言………………………………………………………………… 52
二 材料與方法………………………………………………………… 53
(一) 實驗動物………………………………………………………… 53
(二) 高泌乳素血症的誘發…………………………………………… 53
(三) 活體實驗及採血準備…………………………………………… 53
(四) 高泌乳素血症對活體人絨毛膜性腺促素(hCG)
刺激睪酮分泌的效應…………………………………………… 54
(五) 高泌乳素血症對活體性腺釋素(GnRH)刺激黃
體促素(LH)及睪酮分泌的效應………………………………… 54
(六) 睪酮及黃體促素的放射免疫分析測定………………………… 54
(七) 統計分析………………………………………………………… 54
三 結果………………………………………………………………… 56
(一) 高泌乳素血症對活體人絨毛膜性腺促素(hCG)刺激睪酮分泌的效應 56
(二) 高泌乳素血症對活體性腺釋素(GnRH)刺激黃 體促素(LH)
及睪酮分泌的效應…………………………………………………56
四 討論…………………………………………………………………… 57
第五章 高泌乳素血症對離體雄鼠睪丸間質細胞分泌睪酮之效應 61
一 緒言…………………………………………………………………… 62
二 材料與方法…………………………………………………………… 63
(一) 實驗動物…………………………………………………………… 63
(二) 高泌乳素血症的誘發……………………………………………… 63
(三) 睪丸間質細胞(TIC)的備製………………………………………… 63
(四) 高泌乳素血症對離體睪丸間質細胞分泌睪酮之效應 65
(五)高泌乳素血症對離體睪丸間質細胞經泌乳素刺激睪酮分泌的影響 66
(六)高泌乳素血症對離體睪丸間質細胞信息傳遞的影響 66
(七)睪酮及cAMP之放射免疫測定……………………………………… 66
(八)統計分析…………………………………………………………… 67
三 結果…………………………………………………………………… 68
(一) 高泌乳素血症對離體睪丸間質細胞分泌睪酮之效應 68
(二) 高泌乳素血症對離體睪丸間質細胞經泌乳素刺激睪酮分泌的影響 68
(三) 高泌乳素血症對離體睪丸間質細胞信息傳遞的影響 68
四討論…………………………………………………………………… 69
第六章 高泌乳素血症對雄鼠萊氏細胞分泌睪酮的效應……………… 76
一 緒言…………………………………………………………………… 77
二 材料與方法…………………………………………………………… 79
(一) 實驗動物…………………………………………………………… 79
(二) 高泌乳素血症的誘發……………………………………………… 79
(三) 睪丸間質細胞(TIC)的備製………………………………………… 79
(四) 睪丸萊氏細胞的純化與備製……………………………………… 79
(五) 人絨毛膜性腺促素(hCG) 對睪丸間質細胞(TIC)與
萊氏細胞睪酮分泌的刺激效應…………………………………… 80
(六) 25-OH-膽固醇及妊烯醇酮(pregnenolone) 對睪丸間質細胞(TIC) 與
萊氏細胞睪酮分泌的刺激效應…………………………………… 81
(七) Forskolin及8-Br-cAMP對睪丸間質細胞(TIC) 與
萊氏細胞睪酮分泌的刺激效應…………………………………… 81
(八) 睪酮之放射免疫測定…………………………………………… 81
(九) 統計分析………………………………………………………… 82
三 結果…………………………………………………………………… 83
(一) 人絨毛膜性腺促素(hCG) 對睪丸間質細胞(TIC)與
萊氏細胞睪酮分泌的刺激效應…………………………………… 83
(二) 25-OH-膽固醇及妊烯醇酮(pregnenolone) 對睪丸間質細胞(TIC) 與
萊氏細胞睪酮分泌的刺激效應…………………………………… 83
(三) Forskolin及8-Br-cAMP對睪丸間質細胞(TIC) 與
萊氏細胞睪酮分泌的刺激效應…………………………………… 83
四 討論…………………………………………………………………… 84
第七章 睪丸間質巨噬細胞在高泌乳素血症影響雄鼠萊氏細胞分泌睪酮的效應 90
一 緒言………………………………………………………………… 91
二 材料與方法………………………………………………………… 92
(一) 實驗動物………………………………………………………… 92
(二) 高泌乳素血症的誘發…………………………………………… 92
(三) 睪丸間質細胞(TIC)的備製……………………………………… 92
(四) 睪丸萊氏細胞的純化與備製…………………………………… 92
(五) 睪丸間質巨噬細胞(TIM)的分離與計數………………………… 93
(六) 睪丸間質巨噬細胞(TIM)鑑定的方法…………………………… 93
(七) 腫瘤壞死因子a (TNF-a)對人絨毛膜性腺促素(hCG)刺激萊氏細胞睪酮分泌的影響…94
(八) 泌乳素刺激睪丸間質細胞(TIC)腫瘤壞死因子a (TNF-a)分泌的效應………………… 94
(九) 泌乳素與人絨毛膜性腺促素(hCG)對睪丸間質巨噬細胞(TIM)腫瘤壞死因子a (TNF-a)分泌的交互效應…95
(十) 睪酮之放射免疫測定…………………………………………… 95
(十一) 腫瘤壞死因子a (TNF-a)的酵素免疫測定…………………… 95
(十二) 統計分析……………………………………………………… 96
三 結果………………………………………………………………… 96
(一) 腫瘤壞死因子a (TNF-a)對人絨毛膜性腺促素(hCG)刺激萊氏細胞睪酮分泌的影響… 97
(二) 泌乳素刺激睪丸間質細胞(TIC)腫瘤壞死因子a (TNF-a)分泌的效應………………… 97
(三) 泌乳素與人絨毛膜性腺促素(hCG)對睪丸間質巨噬細胞(TIM)腫瘤壞死因子a (TNF-a)分泌的交互效應… 97
四 討論…………………………………………………………………… 99
第八章 結論……………………………………………………………… 107
圖表目錄………………………………………………………………… 109
參考文獻………………………………………………………………… 112
附錄……………………………………………………………………… 122
特殊溶液配製法………………………………………………………… 123
已發表之論文及相關代表作…………………………………………… 126
名詞中英對照表[94]
1.Salzman A, Cooke NE. Prolactin. In: Adashi EY, Rock JA, Rosenwaks Z. (Eds.) Reproductive endocrinology, surgery, and technology. 1996; Lippincott-Raven, Philadelphia, pp.747-768.
2. Nicoll CS. Physiological actions of prolactin. In: Knobil E, Sawyer WH. (Eds.) Handbook of physiology (section 7, vol. IV, part 2). 1974; Wachington DC: American Physiologic Society, pp.253-292.
3. Hwang P, Guyda H, Friesen H. Purification of human prolactin. J Biol Chem 1972; 247:1955-1958.
4. Cooke NE, Baxter JD. Structural analysis of the prolactin gene suggests a separate origin for its 5''-end. Nature 1982; 297:603-606.
5. Aragona C, Bohnet HG, Friesen HG. Localization of prolactin binding in prostate and testis: the role of serum prolactin concentration on the testicular H receptor. Acta Endocrinol 1977;l 84:402-409.
6. Hondo E, Kurohmaru M, Sakai S, Ogawa K, Hayashi Y. Prolactin receptor expression in rat spermatogenic cells. Biol Reprod 1995;52:1284-1290.
7. Barkey RJ, Weiss-Messer E, Hacham H, Herscovich S, Ber R, Amit T. Prolactin and testicular Leydig cell function: characterization of prolactin receptors in the murine MA-10 testicular Leydig cell line (43752) Proc Soc Exp Biol Med 1994; 206:243-248.
8. Dombrowicz D, Sente B, Closset J, Hennen G. Dose-dependent effects of human prolactin on the immature hypophysectomized rate testis. Endocrinology 1992; 130:695-700.
9.Bartke A. Effects of prolactin on spermatogenesis in hypophysectomized mice. J Endocrinol 1971; 49:311-316.
10. Evans WS, Cronin MJ, Thorner MO. Hypogonadism in hyperprolactinemia-proposed mechanisms. In: Ganong WF, Martini L, (Eds.) Frontiers in Neuroendocrinology. 1982; New York: Raven Press, Vol 7: pp77.
11. Martikainen H, Huhtaniem I, Myllyla V, Sotaniemi K, Nummi K, Vihko R. Testicular responsiveness to a single dose of hCG during chronic hyper- and hypoprolactinemia in aged men. J Androl 1983; 4:192-196.
12. Rubin RT, Gouin PR, Lubin A, Poland RE, Pirke KM. Nocturnal increase of plasma testosterone in men: relation to gonadotropins and prolactin. J Clin Endocrinol Metab 1975; 40:1027-1033.
13. Richards JS, Williams JL. Luteal cell receptor content for prolactin (PRL) and luteinizing hormone (LH). Regulation by LH and PRL. Endocrinology 1976; 99:1571-1581.
14. Halloran BP, DeLuca HF. Calcium transport in small intestine durin pregnancy and lactation. Am J Physiol 1980; 239:E64-E68.
15. Richardson BP. Evidence for a physiological role of prolactin in osmoregulation in the rat after its inhibition by 2-bromo-a-ergokryptine. Brit J Pharmacol 1973; 47:623P-624P.
16. Robertson MT, Boyajian MJ, Patterson K, Robertson WV. Modulation of the chloride concentration of human sweat by prolactin. Endocrinology 1986; 119:2439-2444.
17. Mainoya JR, Bern HA, Regan JW. Influence of ovine prolactin on transport of fluid and sodium chloride by the mammalian intestine and gall bladder. J Endocrinol 1974; 63:311-317.
18. Berczi I. The immunology of prolactin. Semin Reprod Endocrinol 1992; 10:196-219.
19. Blanco-Favela F, Quintal-Alvarez G, Leanos-Miranda A. Association between prolactin and disease activity in systemic lupus erythematosus. J Rheumatol 1999; 26: 55-59.
20. Mateo L, Nolla JM, Bonnin MR, Navarro MA, Roig-Escofet D. High serum prolactin levels in men with rheumatoid arthritis. J Rheumatol 1998; 25:2077-2082.
21. Stern JM, Reichlin S. Prolactin circadian rhythm persists throughout lactation in women. Neuroendocrinology 1990; 51:31-37.
22. Rigg LA, Lein A, Yen SSC. Pattern of increase in circulating prolactin levels during human gestation. Am J Obstet Gynecol 1977; 129:454-456.
23. Stern JM, Konner M, Herman TN, Reichlin S. Nursing behavior, prolactin and postpartum amenorrhoea during prolonged lactation in American and !Kung mothers. Clin Endocrinol 1986; 25:247-258.
24. Molitch ME. Pathologic hyperprolactinemia. Endocrinol Metab Clin North Am 1992; 21:877-901.
25. Stryker TD, Molitch ME. Reversible hyperthyrotropinemia, hyperthyroxinemia and hyperprolactinemia due to adrenal insufficiency. Am J Med 1985; 79:271-276.
26. Martin TL, Kim M, Malarkey WB. The natural history of idiopathic hyperprolactinemia. J Clin Endocrinol Metab 1985; 60:855-858.
27. deGreef WJ, Ooms MP, Vreeburg JTM, Weber RFA. Plasma levels of luteinizing hormone during hyperprolactinemia: response to central administration of antagonists of corticotropin-releasing factor. Neuroendocrinology 1995; 61:19-26.
28. Vasquez JM, Ellegood JO, Nazian SJ, Mahesh VB. Effect of hyperprolactinemia on pituitary sensitivity to luteinizing hormone-releasing hormone following manipulation of sex steroids. Fert Steril 1980; 33:543-549.
29. Cheung CY. Prolactin suppresses luteinizing hormone secretion and pituitary responsiveness to lutenizing hormone-releasing hormone by a direct action at the anterior pituitary. Endocrinology 1983; 113:632-638.
30. Sharkar DK, Yen SSC. Hyperprolactinemia decreases the luteinizing hormone-releasing hormone concentration in pipuitary portal plasma: a possible role for b-endorphin as a mediator. Endocrinology 1985; 116:2080-2084.
31. Voogt JL, deGreef WJ, Visser TJ, deKoning J, Vreeburg TM, Weber RFA. In vivo release of dopamine, luteinizing hormone-releasing hormone and thyrotropin-releasing hormone in male rats bearing a prolactin-secreting tumor. Neuroendocrinology 1987; 46:110-116.
32. Klemcke HG, Bartke A. Effects of chronic hyperprolactinemia in mice on plasma gonadotropin concentrations and testicular human chorionic gonadotropin binding sites. Endocrinology 1981; 108:1763-1768.
33.Boyar RM, Kapen S, Finkelstein JW, Perlow M, Sassin JF, Fukushima DK, Weitzman ED, Hellman L. Hypothalamic-pituitary function in diverse hyperprolactinaemic states. J Clin Invest 1974; 53:1588-1598.
34. Bartke A, Dalterio S. Effects of prolactin on the sensitivity of the testis to LH. Biol Reprod 1976; 15:90-93.
35.McNeilly AS, Sharpe RM, Davidson DW, Fraser HM. Inhibition of gonadotrophin secretion by induced hyperprolactinemia in the male rat. J Endocrinol 1978; 79:59-68.
36. Thorner MO, McNeilly AS, Hagan C, Besser GM. Long-term treatment of galactorrhoea and hypogonadism with bromocriptin. Brit Med J 1974; 2:419-422.
37. McNatty KP, Sawers RS, McNeilly AS. A possible role for prolactin in control of steroid secretion by the human Graffian follicle. Nature 1974; 250:263.
38. Bardin CW, Hardy MP, Catterall JF. Androgens. In: Adashi EY, Rock JA, Rosenwaks Z. (Eds.) Reproductive endocrinology, surgery, and technology. 1996; Lippincott-Raven, Philadelphia, pp. 505-525.
39. Zirkin BR, Dykman DD, Kromann N, Cochran RC, Ewing LL. Inhibition and recovery of testosterone secretion in rats are tightly coupled to quantitative changes in Leydig cell smooth endoplasmic reticulum. Ann N Y Acad Sci 1982; 383:17-28.
40. Ascoli M, Freeman DA. Sources of cholestrrol used for steroid biosynthesis in cultured Leydig tumor cells. In: Menon KMJ, Strauss JF. (Eds.) Lipoprotein and cholesterol metabolism in steroidogenic tissues. 1985; George F. Stichley., Philadelphia.
41. Clark BJ, Wells J, King HR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protine in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 1994; 269:28314-28322.
42. Payne AH, Youngblood GL. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod 1995; 52:217-225.
43. Jameson JL, Hollenberg AN. Regulation of chorionic gonadotropin gene expression. Endocr Rev 1993; 14:203-221.
44. Wilson LJr, Parsons M. Endocrinology of human gestation. In: Adashi EY, Rock JA, Rosenwaks Z. (Eds.) Reproductive endocrinology, surgery, and technology. 1996; Lippincott-Raven, Philadelphia, pp. 451-475.
45. Everett JW. Luteotropic function of autografts of the rat hypophysis. Endocrinology 1954; 54:685-690.
46.Shyu JC, Duh SL, Liao JM, Shih HC, Chang CL. The effect of chronic hyperprolactinemia produced by pituitary-homografts on cold-restraint stress induced gastric ulceration in male rats. Chung Shan Med J 1994; 5:19-28.
47. Merchenthaler I, Lennard DE, Cianchetta P, Merchenthaler A, Bronstein D. Induction of proenkephalin in tuberoinfundibular dopaminergic neurons by hyperprolactinemia: the role of sex steroids. Endocrinology 1995; 136:2442-2450.
48. Wang PS, Tsai SC, Hwang GS, Wang SW, Lu CC, Chen JJ, Liu SR, Lee KY, Chien EJ, Chien CH, Lee HY, Lau CP, Tsai CL. Calcitonin inhibits testosterone and luteinizing hormone secretion through a mechanism involving an increase in cAMP production in rats. J Bone Miner Res 1994; 9:1583-1590.
49.Sheu WJ, Pu HF, Wang SW, Ho LLT, Wang PS. Metabolic clearence rate and secretion rate of gastric inhibitory poypeptide in the rat. Chinese J Physiol 1987; 30: 25-33.
50.Tsai SC, Chiao YC, Lu CC, Doong ML, Chen YH, Shih HC, Liaw C, Wang SW, Wang PS. Inhibition by amphetamine of testosterone secretion through a mechanism involving an increase of cyclic AMP production in rat testes. Brit J Pharmacol 1996; 118:984-988.
51. Steel RGD, Torrie JH. Principles and Procedures of Statistics. 2nd Ed., 1960; New York: McGraw-Hill.
52. Lin H, Wang SW, Tsai SC, Chen JJ, Chiao YC, Lu CC, Huang WJS, Wang GJ, Chen CF, Wang PS. Inhibitory effect of digoxin on testosterone secretion through mechanisms involving decrease of cyclic AMP production and cytochrome P450scc activity in rat testicular interstitial cells. Brit J Pharmacol 1998; 125: 1635-1640.
53.Wang SW, Lin H, Hwang WJ, Wang PS. Inhibition of testosterone secretion by digitoxin in rat testicular interstitial cells. J Cell Biochem 1999; 74:74-80.
54. Lu SS, Lau CC, Tung YF, Hwang SW, Chen YH, Shih HC, Tsai SC, Lu CC, Wang SW, Chen JJ, Chien EJ, Chien CH, Wang PS. Lactate stimulates progesterone secretion via an increase in cAMP production in exercised female rats. Am J Physiol 1996; 271:E910-E915.
55. Sharpe RM, McNeilly AS. Differences between dispersed Leydig cells and intact testes in their sensitivity to gonadotrophin-stimulation in vitro after alteration of LH-receptor numbers. Mol Cell Endocrinol 1980; 18:75-86.
56. Waeber C, Reymond O, Reymond M, Lemarchand-Beraud T. Effects of hyper- and hypoprolactinemia on gonadotropin secretion, rat testicular luteinizing hormone/ human chorionic gonadotropin receptors and testosterone production by isolated Leydig cells. Biol Reprod 1983; 28:167-177.
57. Weiss-Messer E, Ber R, Barkey RJ. Prolactin and MA-10 Leydig cell steroidogenesis: biphasic effects of prolactin and signal transduction. Endocrinology 1996; 137:5509-5518.
58. Barkey RJ, Weiss-Messer E, Mandel S, Gahnem F, Amit T. Prolactin and antiprolactin receptor antibody inhibit steroidogenesis by purified rat Leydig cells in culture. Mol Cell Endocrinol 1987; 52:71-80.
59. Papadopoulos V, Drosdowsky MA, Carreau S. In vitro effects of prolactin and dexamethasone on rat Leydig cell aromatase activity. Andrologia 1986; 18:79-83.
60. Bartke A, Klemcke H, Matt K. Effects of physiological and abnormally elevated prolactin levels on the pituitary-testicular axis. Med Biol 1986; 63: 264-272.
61. Welsh TH Jr, Kasson BG, Hsueh AJW. Direct biphasic modulation of gonadotropin-stimulated testicular androgen biosynthesis by prolactin. Biol Reprod 1986; 34:796-804.
62. Odell WD and Larsen JL. In vitro studies of prolactin inhibition of luteinizing hormone action on Leydig cells of rats and mice. P Soc Exp Biol Med 1984; 177:459-464.
63. Huang WJ, Yeh JY, Tsai SC, Lin H, Chiao YC, Chen JJ, Lu CC, Hwang SW, Wang SW, Chang LS, Wang PS. Regulation of testosterone secretion by prolactin in male rats. J Cell Biochem 1999; 74: 111-118.
64.Browning JY, D''Agata R, Grotjan HE. Isolation of purified rat Leydig cells using continuous Percoll gradients. Endocrinology 1981; 109:667-669.
65. Papadopoulos V, Carreau S, Drosdowsky MA. Effect of phorbol ester and phospholipase C on LH-stimulated steroidogenesis in purified rat Leydig cells. FEBS Lett 1985; 188:312-316.
66. Miller SC, Bowman BM, Rowland HG. Structure, cytochemistry, endocytic activity, and immunoglobulin (Fc) receptors of rat testicular interstitial-tissue macrophages. Am J Anat 1983; 168:1-13.
67. Niemi M, Sharpe RM, Brown WRA. Macrophages in the interstitial tissue of the rat testis. Cell Tissue Res 1986; 243:337-344.
68. Le J, Vilcek J. Tumor necrosis factor and interleukin 1:cytokines with multiple overlapping biological activities. Lab Invest 1987; 56:234-244.
69. Gaytan F, Bellido C, Aguilar E, Rooijen NV. Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 1994; 102:393-399.
70. Gaytan F, Bellido C, Morales C, Rooijen NV, Aguilar E. Role of testicular macrophages in the response of Leydig cells to gonadotrophins in young hypophysectomized rats. J Endocrinol 1995; 147: 463-471.
71. Tsai SC, Chen JJ, Chiao YC, Lu CC, Lin H, Yeh JY, Lo MJ, Kau MM, Wang SW, Wang PS. The role of cyclic AMP production, calcium channel activation and enzyme activities in the inhibition of testosterone secretion by amphetamine. Brit J Pharmacol 1997; 122:949-955.
72. Hales DB, Xiong Y, Tur-Kaspa I. The role of cytokines in the regulation of Leydig cell p450c17 gene expression. J Steroid Biochem Mol Biol 1992; 43: 907-914.
73. Kern S, Robertson SA, Mau VJ, Maddocks S. Cytokine secretion by macrophages in the rat testis. Biol Reprod 1995; 53:1407-1416.
74. Hedger MP. Testicular leukocytes: what are they doing? Rev Reprod 1997; 2:38-47.
75. Hutson JC. Testicular macrophages. Int Rev Cytol 1994; 149:99-143.
76. Themmen APN, Molenaar R, Visser WJ, Jongkind JF, Rommerts FFG, van der Molen HJ. Comparison of the cellular composition and steroidogenic properties of preparations of interstitial cells isolated from immature and mature rat testis. J Endocrinol 1987; 112: 361-366.
77. Gaytan F, Romero JL, Bellido C, Morales C, Reymundo C, Aguilar E. Effects of growth hormone and prolactin on testicular macrophages in long-term hypophysectomized rats. J Reprod Immunol 1994; 27: 73-84
78. Mauduit C, Hartmann DJ, Chauvin MA, Revol A, Morera AM, Benahmed M. Tumor necrosis factor a inhibits gonadotropin action in cultured porcine Leydig cells: site(s) of action. Endocrinology 1991; 129: 2933-2940.
79. Sun XR, Risbridger GP. Site of macrophage inhibition of luteinizing hormone-stimulated testosterone production by purified Leydig cells. Biol Reprod 1994; 50:363-367.
80. Sun XR, Hedger MPM, Risbridger GP. The effect of testicular macrophages and interleukin-1 on testosterone production by purified adult rat Leydig cells cultured under in vitro maintenance conditions. Endocrinology 1993; 132: 186-192.
81. Mauduit C, Chauvin MA, Hartmann DJ, Revol A, Morera AM, Benahmed M. Interleukin-1 a as a potent inhibitor of gonadotropin action in porcine Leydig cells: site(s) of action. Biol Reprod 1992; 46: 1119-1126.
82.Vilcek J, Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem 1991; 266:7313-7316.
83. Calkins JH, Sigel MM, Nankin HR, Lin T. Interleukin-1 inhibits Leydig cell steroidogenesis in primary culture. Endocrinology 1988; 123: 1605-1610.
84. Fauser BCJM, Galway AB, Hsueh JW. Inhibitory actions of interleukin-1 b on steroidogenesis in primary cultures of neonatal rat testicular cells. Acta Endocrinol 1989; 120:401-408.
85. Lin T, Guo H, Calkins JH, Wang D, Chi R. Recombinant monocyte-derived interleukin-1 receptor antagonist reverses inhibitory effects of interleukin-1 on Leydig cell steroidogenesis. Mole Cell Endocrinol 1991; 78: 205-209.
86. Calkins JH, Guo H, Sigel MM, Lin T. Tumor necrosis factor-α enhances inhibitory effects of interleukin-1 b on Leydig cell steroidogenesis. Biochem Bioph Res Co 1990; 166: 1313-1318.
87. Hales DB. Interleukin-1 inhibits Leydig cell steroidogenesis primarily by decreasing 17 a -hydroxylase/C17-20 lyase cytochrome P450 expression. Endocrinology 1992; 131: 2165-2172.
88. Lin T, Wang D, Nagpal ML, Calkins JH, Chang W, Chi R. Interleukin-1 inhibits cholesterol side-chain cleavage cytochrome P450 expression in primary cultures of Leydig cells. Endocrinology 1991; 129: 1305-1311.
89. Mauduit C, Gasnier F, Rey C, Chauvin M-A, Stocco D M, Louisot P, Benahmed M. Tumor necrosis factor- a inhibits Leydig cell steroidogenesis through a decrease in steroidogenic acute regulatory protein expression. Endocrinology 1998; 139: 2863-2868.
90. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996; 17:221-244.
91.Xiong Y, Hales DB. The role of tumor necrosis factor- a in the regulation of mouse Leydig cell steroidogenesis. Endocrinology 1993; 132: 2438-2444.
92. Li X, Youngblood GL, Payng AH, Hales DB. Tumor necrosis factor- a inhibition of 17 a -hydroxylase/C17-20 lyase gene (cyp17) expression. Endocrinology 1995; 136: 3519-3526.
93. Lin T, Wang D, Nagpal ML, Chang W. Recombinant murine tumor necrosis factor-alpha inhibits cholesterol side-chain cleavage cytochrome P450 and insulin-like growth factor-I gene expression in rat Leydig cells. Mol Cell Endocrinol 1994; 101: 111-119.
94. 國立編譯館:內分泌學名詞。水牛出版社,1998,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 馮朝霖(民84) 教師專業的自我成長與重建教育生機。教育實習輔導
2. 曾國鴻(民81) 教師生涯職志的體認與規劃。教育實習輔導通訊,三期,頁9-15。
3. 胡夢鯨(民85) 從成人教育學理論模型論成人教育專業人才的培育。
4. 林進材(民88) 邁向教師教學專業成長。國教之友,第51卷第3期,頁3-8。
5. 梅瑤芳(民88) 教育部建構技職教師進修體制之初步構想,技術及職業教育雙月刊,第53期,頁7-9。
6. 何福田(民87) 教師在職進修現況與展望,國教天地,第130期,頁4-9。
7. 王文漢(民87) 高職教師進修的檢討與建言,技術及職業教育雙月刊,第45期,頁31-33。
8. 1.林世昌,“以超音波衰減檢測低碳鋼的晶粒大小及機械性質”,檢測技術,七卷三期,1989年,pp.50-60。
9. 羅清水(民87) 從終身學習論高職教師專業發展的理念與策略,技術及職業教育雙月刊,第四十六期,台北:教育部技術及職業教育司。
10. 簡紅珠(民86) 專業導向的教師評鑑。北縣教育,16期,頁19-22。
11. 謝錫湖、林輝亮(民88) 終身學習與高職教師進修之研究。木柵高工學報,第五期,頁117-126。
12. 劉明秋(民80) 教師生涯發展及其影響因素分析。諮商與輔導,七十期,頁43-45。
13. 楊思偉(民85) 在職進修教育的趨勢與做法。研習資訊,13卷,6期,頁24-27。
14. 張稚美(民88) 以「層面分析」談基層教師的專業成長。文教新潮,第四卷,第一期,頁26-28。
15. 郭生玉(民83) 影響教師工作心厭因素之分析研究。國立台灣師範大學教育心理與輔導學系,教育心理學報,第27期,頁63-49。