跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范光平
研究生(外文):Kung-Ping Fang
論文名稱:鉀離子通道Kv3.4在口腔癌化過程中所扮演的角色
論文名稱(外文):A study of voltage-gated potassium channel Kv3.4 during oral carcinogenesis
指導教授:張國威
指導教授(外文):Kuo-Wei Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:55
中文關鍵詞:kv3.4鉀離子通道
外文關鍵詞:kv3.4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據過去研究顯示:鉀離子通道與多種細胞包括腫瘤細胞株的增殖有關,以生長因子刺激T淋巴球以及上皮細胞都將使得此通道的表現量增加,且提升此通道活性亦會使增殖速率升高。另外,利用具有特異性的鉀離子通道阻斷劑,如tetraethylammonium (TEA)、4-aminopyridine(4-AP)、及quinine等藥物,會使得受生長因子刺激後的細胞增殖受抑制。此外,在腫瘤細胞中,鉀離子通道活性以及表現量的增加已被報告過。
根據衛生署九十年統計資料指出:口腔鱗狀上皮癌位居台灣男性十大癌症死亡率之第五位,且罹患人數及死亡率有逐年增加之趨勢。因此瞭解口腔癌化之基因異常,對於瞭解及控制口腔鱗狀上皮癌將有實質幫助。本實驗室過去用展示差異(differential display)之基因研究,發現鉀離子通道Kv 3.4在口腔癌細胞中有異常過度表現之現象。本研究中利用載體將Kv3.4基因片段轉染進入口腔鱗狀上皮癌細胞株OEC-M1,使其表現量增加,藉以探討此基因在口腔癌化過程中所扮演的角色。本研究結果中發現:Kv3.4的增加,有助於細胞生長的速度,但利用流式細胞儀來偵測,並無法發現細胞週期有明顯的變化。另一方面,Kv3.4的表現,有增強癌細胞抗藥性的現象,惟Kv3.4不會造成3T3細胞的轉型,可能不具有直接的致癌潛能。但其於癌症生成所扮演之角色仍值得深入探討。

Potassium channel have been reported to be involved in the proliferation of many types of cells, including tumor cell lines. Mitogenic stimulation increases the level of expression of potassium channel in T lymphocytes and epithelial cells. In addition, drugs that block potassium channels inhibit the proliferation of mitogen-stimulated normal human T lymphocytes, malignant rat lymphoma cells, human melanoma cells and human breast cancer cells. The over expression of potassium channel and related activity have been observed in neoplasms. Oral cancer is the fifth most common malignancy of the male population in Taiwan and more than 90 % of that are oral squamous cell carcinoma(OSCC) and the incidence and mortality of OSCC are increasing year by year. Our previous studies have shown that the abnormal expression of a voltage-gated potassium channel, Kv3.4 in an OSCC cell line by differential display. Preliminary studies also indicated the differential expression of Kv3.4 in normal appealing oral tissue and OSCC both in mRNA and protein level. We constructed the expression vector carring the Kv3.4 coding sequence, transfected into the OSCC cell line OEC-M1 and determined the high expression of Kv3.4 for subsequent carcinogenic studies. Our results suggest that the increasing expression of Kv3.4 may be beneficial for the cell growth without altering the cell cycle pattern of cancer cells. In addition, over expressing of Kv3.4 increased the chemoreistance of cancer cells. Although, Kv3.4 can not transform the 3T3 cells excluded the direct contribution of Kv3.4 in cell transformation, The potential role of Kv3.4 in carcinogenesis deserved further investigation.

目錄
目錄 ………………………………………………….. Ⅰ
表次目錄 …………………………………………….. Ⅱ
圖次目錄 ……………………………………………. Ⅲ
中文摘要 ……………………………………………. 1
英文摘要 ……………………………………………. 3
緒論 …………………………………………………. 5
材料與方法 …………………………………………. 15
結果 …………………………………………………. 29
討論 …………………………………………………. 33
表列 …………………………………………………. 37
圖列 …………………………………………………. 38
參考資料 ……………………………………………. 50
表次目錄
表一、核酸引子 …………………………………….. 37
圖次目錄
附圖一、電位控制與流入性整流器鉀通道結構圖………… 38
附圖二、電位控制性鉀通道之數狀分類圖………………… 39
附圖三、載體pGEM-T Easy及pcDNA輿圖……………… 40
附圖四、表現載體製備流程圖……………………………… 41
圖一、以RT-PCR偵測Kv3.4在OSCC及ESCC之表現… 42
圖二、構築表現載體之確認……………………………….... 43
圖三、偵測細胞之DNA所攜帶Kv3.4拷貝含量…………… 44
圖五、偵測細胞之Kv3.4之mRNA表現量……………...… 45
圖六、以MTT方式測得細胞之生長曲線…….……….…….. 46
圖七、以MTT方式測得細胞經藥物處理之存活率…….……. 47
圖八、3T3細胞送入Kv3.4後之比較………………….…… 48
圖九、細胞在電生理上的表現…………………………….… 49

1.Jan, L. Y. & Jan, Y. N. Voltage-gated and inwardly rectifying potassium channels. journal of physiology 505, 267-282 (1997).
2.Reimann, F. & Ashcroft, F. M. Inwardly rectifying potassium channels. Current Opinion in Cell Biology 11, 503-8 (1999).
3.Parcej, D. N., Scott, V. E. & Dolly, J. O. Oligomeric properties of alpha-dendrotoxin-sensitive potassium ion channels purified from bovine brain. Biochemistry 31, 11084-8 (1992).
4.Rettig, J. et al. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369, 289-94 (1994).
5.Schwartzman, R. A. & Cidlowski, J. A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocrine Reviews 14, 133-51 (1993).
6.Lewis, R. S. & Cahalan, M. D. Ion channels and signal transduction in lymphocytes. Annual Review of Physiology 52, 415-30 (1990).
7.Benson, R. S., Heer, S., Dive, C. & Watson, A. J. Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis. American Journal of Physiology 270, C1190-203 (1996).
8.Beauvais, F., Michel, L. & Dubertret, L. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. Journal of Leukocyte Biology 57, 851-5 (1995).
9.Bortner, C. D. & Cidlowski, J. A. A necessary role for cell shrinkage in apoptosis. Biochemical Pharmacology 56, 1549-59 (1998).
10.Bortner, C. D., Hughes, F. M., Jr. & Cidlowski, J. A. A primary role for K+ and Na+ efflux in the activation of apoptosis. Journal of Biological Chemistry 272, 32436-42 (1997).
11.Dubois, J. M. & Rouzaire-Dubois, B. Role of potassium channels in mitogenesis. Progress in Biophysics & Molecular Biology 59, 1-21 (1993).
12.DeCoursey, T. E., Chandy, K. G., Gupta, S. & Cahalan, M. D. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307, 465-8 (1984).
13.Chandy, K. G., DeCoursey, T. E., Cahalan, M. D., McLaughlin, C. & Gupta, S. Voltage-gated potassium channels are required for human T lymphocyte activation. Journal of Experimental Medicine 160, 369-85 (1984).
14.Chiu, S. Y. & Wilson, G. F. The role of potassium channels in Schwann cell proliferation in Wallerian degeneration of explant rabbit sciatic nerves. Journal of Physiology 408, 199-222 (1989).
15.Puro, D. G., Roberge, F. & Chan, C. C. Retinal glial cell proliferation and ion channels: a possible link. Investigative Ophthalmology & Visual Science 30, 521-9 (1989).
16.Rouzaire-Dubois, B. & Dubois, J. M. A quantitative analysis of the role of K+ channels in mitogenesis of neuroblastoma cells. Cellular Signalling 3, 333-9 (1991).
17.DeCoursey, T. E., Chandy, K. G., Gupta, S. & Cahalan, M. D. Voltage-dependent ion channels in T-lymphocytes. Journal of Neuroimmunology 10, 71-95 (1985).
18.Vaur, S., Bresson-Bepoldin, L., Dufy, B., Tuffet, S. & Dufy-Barbe, L. Potassium channel inhibition reduces cell proliferation in the GH3 pituitary cell line. Journal of Cellular Physiology 177, 402-10 (1998).
19.Berridge, M. J. Calcium signalling and cell proliferation. Bioessays 17, 491-500 (1995).
20.Woodfork, K. A., Wonderlin, W. F., Peterson, V. A. & Strobl, J. S. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. Journal of Cellular Physiology 162, 163-71 (1995).
21.Xu, B., Wilson, B. A. & Lu, L. Induction of human myeloblastic ML-1 cell G1 arrest by suppression of K+ channel activity. American Journal of Physiology 271, C2037-44 (1996).
22.Lu, K. P. & Means, A. R. Regulation of the cell cycle by calcium and calmodulin. Endocrine Reviews 14, 40-58 (1993).
23.Boonstra, J., Mummery, C. L., Tertoolen, L. G., Van Der Saag, P. T. & De Laat, S. W. Cation transport and growth regulation in neuroblastoma cells. Modulations of K+ transport and electrical membrane properties during the cell cycle. Journal of Cellular Physiology 107, 75-83 (1981).
24.Amigorena, S., Choquet, D., Teillaud, J. L., Korn, H. & Fridman, W. H. Ion channel blockers inhibit B cell activation at a precise stage of the G1 phase of the cell cycle. Possible involvement of K+ channels. Journal of Immunology 144, 2038-45 (1990).
25.Lin, C. S. et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. Journal of Experimental Medicine 177, 637-45 (1993).
26.Pappone, P. A. & Ortiz-Miranda, S. I. Blockers of voltage-gated K channels inhibit proliferation of cultured brown fat cells. American Journal of Physiology 264, C1014-9 (1993).
27.Nilius, B. & Wohlrab, W. Potassium channels and regulation of proliferation of human melanoma cells. Journal of Physiology 445, 537-48 (1992).
28.Lepple-Wienhues, A. et al. K+ channels and the intracellular calcium signal in human melanoma cell proliferation. Journal of Membrane Biology 151, 149-57 (1996).
29.Pancrazio, J. J., Tabbara, I. A. & Kim, Y. I. Voltage-activated K+ conductance and cell proliferation in small-cell lung cancer. Anticancer Research 13, 1231-4 (1993).
30.Skryma, R. N. et al. Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate 33, 112-22 (1997).
31.Magni, M., Meldolesi, J. & Pandiella, A. Ionic events induced by epidermal growth factor. Evidence that hyperpolarization and stimulated cation influx play a role in the stimulation of cell growth. Journal of Biological Chemistry 266, 6329-35 (1991).
32.Wegman, E. A., Young, J. A. & Cook, D. I. A 23-pS Ca2(+)-activated K+ channel in MCF-7 human breast carcinoma cells: an apparent correlation of channel incidence with the rate of cell proliferation. Pflugers Archiv - European Journal of Physiology 417, 562-70 (1991).
33.Choquet, D. & Korn, H. Modulation of voltage-dependent potassium channels in B lymphocytes. Biochemical Pharmacology 37, 3797-802 (1988).
34.Wonderlin, W. F., Woodfork, K. A. & Strobl, J. S. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. Journal of Cellular Physiology 165, 177-85 (1995).
35.Nilius, B., Schwarz, G. & Droogmans, G. Control of intracellular calcium by membrane potential in human melanoma cells. American Journal of Physiology 265, C1501-10 (1993).
36.Deutsch, C., Krause, D. & Lee, S. C. Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester. Journal of Physiology 372, 405-23 (1986).
37.Liu, S. I. et al. Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochimica et Biophysica Acta 1368, 256-66 (1998).
38.Wang, Y. F., Jia, H., Walker, A. M. & Cukierman, S. K-current mediation of prolactin-induced proliferation of malignant (Nb2) lymphocytes. Journal of Cellular Physiology 152, 185-9 (1992).
39.Strobl, J. S., Wonderlin, W. F. & Flynn, D. C. Mitogenic signal transduction in human breast cancer cells. General Pharmacology 26, 1643-9 (1995).
40.Klimatcheva, E. & Wonderlin, W. F. An ATP-sensitive K(+) current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. Journal of Membrane Biology 171, 35-46 (1999).
41.Lee, Y. S., Sayeed, M. M. & Wurster, R. D. In vitro antitumor activity of cromakalim in human brain tumor cells. Pharmacology 49, 69-74 (1994).
42.Chin, L. S., Park, C. C., Zitnay, K. M. & Sinha, M. 4-Aminopyridine Cause Apoptosis and Blocks an Outward Rectifier K+ Channel in Malignant Astrocytoma Cell Lines. journal of Neuroscience Research 48, 122-127 (1997).
43.Rouzaire-Dubois, B. & Dubois, J. M. K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. Journal of Physiology 510, 93-102 (1998).
44.Whitaker, M. & Patel, R. Calcium and cell cycle control. Development 108, 525-42 (1990).
45.Santella, L. The role of calcium in the cell cycle: facts and hypotheses. Biochemical & Biophysical Research Communications 244, 317-24 (1998).
46.YK, W. et al. p53 alterations in betel quid and tobacco-associated oral squamous cell carcinomas from Taiwan. journal of Oral Pathological Medicine 27, 243-248 (1998).
47.Chen, C.-L., Chi, C.-W., Chang, K.-W. & Liu, T.-Y. Safrole-like DNA adducts in oral tissue from oral cancer pations with a betel quid chewing history. carcinogenesis 20, 2331-2334 (1999).
48.IARC & Lyon. Betel-quod and areca-nut chewing. IARC 37, 141-202 (1985).
49.Southern, P. J. & Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. Journal of Molecular & Applied Genetics 1, 327-41 (1982).
50.Stein, G. S. & Borun, T. W. The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. I. The accelerated accumulation of acidic residual nuclear protein before the initiation of DNA replication. Journal of Cell Biology 52, 292-307 (1972).
51.Calabro, V., Parisi, T., Di Cristofano, A. & La Mantia, G. Suppression of Ras-mediated NIH3T3 transformation by p19ARF does not involve alterations of cell growth properties. Oncogene 18, 2157-62 (1999).
52.Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv - European Journal of Physiology 391, 85-100 (1981).
53.Keyomarsi, K., Sandoval, L., Band, V. & Pardee, A. B. Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Research 51, 3602-9 (1991).
54.Wang, S. et al. Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. Journal of Cellular Physiology 176, 456-64 (1998).
55.Nakamura, T. Y., Artman, M., Rudy, B. & Coetzee, W. A. Inhibition of rat ventricular IK1 with antisense oligonucleotides targeted to Kir2.1 mRNA. American Journal of Physiology 274, H892-900 (1998).
56.Rudy, B. et al. Cloning of a human cDNA expressing a high voltage-activating, TEA-sensitive, type-A K+ channel which maps to chromosome 1 band p21. Journal of Neuroscience Research 29, 401-12 (1991).
57.Xu, C., Tang, G., Lu, Y. & Wang, R. Molecular basis of voltage-dependent delayed rectifier K+ channels in smooth muscle cells from rat tail artery. Life Sciences 66, 2023-33 (2000).
58.Rudy, B., Hoger, J. H., Lester, H. A. & Davidson, N. At least two mRNA species contribute to the properties of rat brain A-type potassium channels expressed in Xenopus oocytes. Neuron 1, 649-58 (1988).
59.Diochot, S., Schweitz, H., Beress, L. & Lazdunski, M. Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. Journal of Biological Chemistry 273, 6744-9 (1998).
60.Grinstein, S. & Foskett, J. K. Ionic mechanisms of cell volume regulation in leukocytes. Annual Review of Physiology 52, 399-414 (1990).
61.Lee, S. C., Price, M., Prystowsky, M. B. & Deutsch, C. Volume response of quiescent and interleukin 2-stimulated T-lymphocytes to hypotonicity. American Journal of Physiology 254, C286-96 (1988).
62.Pardo, L. A. et al. Oncogenic potential of EAG K(+) channels. EMBO Journal 18, 5540-7 (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 邱敏捷:〈袁宏道的文學與禪〉, 《中國文化月刊》,170卷
2. 27.展甦(1983/3)〈三隻眼的旅者─讀王鼎鈞的《海水天涯中國人》〉.明道文藝
3. 周質平:〈評公安派之詩論〉, 《中外文學》, 第十二卷 第十期
4. 76.叢甦(2000/2)〈沙灘的腳印--「留學生文學」與流放意識〉.文訊第172期
5. 70.應鳳凰(1984/7)〈王鼎鈞的書〉.明道文藝
6. 68.羅英(1988/12)〈讀那條虹─評王鼎鈞《左心房漩渦》〉.聯合文學
7. 64.蔡雅薰(2000/2)〈台灣留學生文學到移民文學的發展與近況〉.文訊第172期。
8. 63.劉秀美(2000/2)〈略論留外華人小說中的主題意識之轉變〉.文訊第172期
9. 60.鄭明娳(1987/11)〈論中國現代寓言文學〉.中外文學
10. 59.齊邦媛(1978/5)〈散文的兩個世界─由王鼎鈞的「碎琉璃」、蕭白的「響在心中的水聲」談起〉.幼獅文藝293期
11. 23.徐學(1991/7)〈世紀末與創世紀─八十年代後臺灣散文綜觀與趨勢〉.聯合文學第五卷第二期
12. 22.高天生(1978/9)〈傳統課題與文學創作:試論「碎琉璃」中的憂患意識〉.明道文藝30期
13. 15.林燿德(1995/10)〈傳統之軸與前衛之輪─半世紀的台灣散文面目〉.聯合文學132期。
14. 14.林柏燕(1976/1)〈評李喬、王鼎鈞、蔡文甫自選集〉.書評書目
15. 12.宋瑞(1978/9)〈品鑒碎琉璃:從故事看本書的結構〉.明道文藝