(3.239.33.139) 您好!臺灣時間:2021/03/08 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳佳芬
研究生(外文):Chia-Fen Wu
論文名稱:登革熱病毒蛋白抑制劑篩選系統之建立
論文名稱(外文):Establishment of an in vitro system for screening dengue virus protease inhibitors
指導教授:許萬枝許萬枝引用關係
指導教授(外文):Wan-Jr Syu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:64
中文關鍵詞:登革熱病毒蛋白蛋白抑制劑
外文關鍵詞:dengue virusNS3 proteaseprotease inhibitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
登革熱病毒的第三非結構蛋白(NS3)在病毒複製上扮演極重要的角色,若能抑制它的活性就能抑制病毒的複製,因此本實驗便嘗試以NS3的蛋白活性為基礎建立篩藥系統。根據NS3 trans切割NS4b-NS5的特性,我們構築了一受質蛋白(Pin-NS4b5-1D7),其N端具有biotinylated peptide (Pin),中間含有NS4b-NS5的切割點,C端為maltose binding protein epitope,可被1D7 monoclonal antibody辨認。當Pin-NS4b5-1D7被由大腸桿菌生產並經過純化的登革熱病毒蛋白(NS2b3pro)切割後,將其產物固定於敷有avidin的96孔平盤,以1D7 monoclonal body進行ELISA,將會因為帶有tag的片段被洗去而沒有訊號﹔若蛋白活性被抑制,則受質蛋白不被切割,則會有訊號。本論文已完成蛋白(NS2b3pro)的純化,受質蛋白(Pin-NS4b5-1D7)的純化,並確定本純化的蛋白對受質蛋白具有活性。
根據NS3須在NS2b的輔助下才能發揮最大活性,以及NS3 cis切割NS2b-NS3的特性,本實驗設計了另一套系統。蛋白D-NS3pro,其N端帶有D epitope,可被6A1 monoclonal antibody辨識,其後連接NS2b-NS3的切割點序列以及NS3 protease domain,並且於C端接有6× His tag。而cofactor方面,構築了N端為GST連接NS2b cofactor domain的融合蛋白(GST-NS2b)。GST-NS2b與D-NS3pro反應後,將促使D-NS3pro進行cis cleavage,然後將產物固定於敷有Ni2+的96孔平盤後,以6A1進行ELISA後,由於帶有tag的片段被洗去,於是沒有訊號產生﹔若蛋白活性被抑制,則蛋白不進行cis cleavage,如此便有訊號。本論文已完成蛋白D-NS3pro的純化,GST-NS2b的純化,並確定D-NS3pro在GST-NS2b的輔助下具有活性,且已初步進行反應條件最佳化。

Non-structural protein 3 (NS3) of dengue virus, which is a helicase and a protease, is a critical enzyme involved in virus replication. Inhibiting the protease or the helicase activity will interrupt virus replication. For developing the therapy of dengue virus infection, we developed an in vitro system for screening protease inhibitors of NS3. The protease complex NS2b3pro containing the hydrophilic domain of NS2b linked to NS3 protease domain with a histidine tag at the C-terminus was expressed in E. coli and purified with Ni2+ column. The substrate Pin-NS4b5-1D7 consists of an NS3 protease trans cleavage site flanked by the last 25 residues of NS4b and the first 77 residues of NS5. Besides the NS3 substrate region, the Pin-NS4b5-1D7 is a protein with a biotinylated peptide at the N-terminus and an epitope recognized by a monoclonal antibody 1D7 at the C-terminus. Theoretically through its biotin in the N-terminal region, Pin-NS4b5-1D7 could be bound to ELISA plates coated with avidin, whereas through its C-terminal tag, the same molecule could be recognized by monoclonal antibody 1D7. When the protease is added to Pin-NS4b5-1D7, the proteolytical product (NS5-1D7 fragment) was released from the biotinylated fusion protein, and as a result, the binding of monoclonal antibody 1D7 decreases. In this study, the recombinant protease NS2b3pro and the substrate Pin-NS4b5-1D7 have been prepared and characterized.
We also took advantage of that NS2b is essential for the cis cleavage activity of NS2b-NS3 and designed an unique system to monitor the cis activity. The NS3 protease portion was tagged by a hexa-histidine stretch at the C-terminus and a D epitope and a few NS2b C-terminal residues at the N-terminus. This protease precursor can be followed by immobilization on Ni2+ coated plates and recognized by monoclonal antibody 6A1. When NS2b was provided from GST-NS2b, the protease was activated and self cleaved. As a result, the D epitope and the following residues of NS2b C-terminus were released out of NS3pro protein. We have characterized and optimized the assay conditions in a Western blotting format in this study.

目錄
ABSTRACT1
中文摘要2
壹、緒論3
貳、實驗材料與方法7
參、實驗結果15
肆、討論24
伍、圖31
陸、表53
柒、附圖57
捌、參考文獻59

Arias, C. F., Preugschat, F., and Strauss, J. H. (1993). Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193, 888-99.
Bazan, J. F., Fletterick, R. J. (1989). Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology. 171, 637-9.
Bianchi, E., Steinkuhler, C., Taliani, M., Urbani, A., Francesco, R. D., and Pessi, A. (1996). Synthetic depsipeptide substrates for the assay of human hepatitis C virus protease. Analytical Biochemistry. 237, 239-244.
Brinkworth, R. I., Fairlie, D. P., Leung, D.,and Young, P. R. (1999). Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. Journal of General Virology. 80 (Pt 5), 1167-1177.
Chambers, T. J., Weir, R. C., Grakoui, A., McCourt, D. W., Bazan, J. F., Fletterick, R. J., Rice, C. M. (1990a). Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proceedings of the National Academy of Sciences of the United States of America. 87, 8898-902.
Chambers, T. J., Hahn, C. S., Galler, R., Rice, C. M. (1990b). Flavivirus genome organization, expression, and replication. Annual Review of Microbiology. 44, 649-88.
Chambers, T. J., Nestorowicz, A., Amberg, S. M., Rice, C. M. (1993). Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. Journal of Virology. 67, 6797-807.
Cho, Y. G., Yang, S. H., and Sung, Y. C. (1998). In vivo assay for hepatitis C serine protease activity using a secreted protein. Journal of Viological Methods. 72, 109-115.
Clum, S., Ebner, K. E., and Padmanabhan, R. (1997). Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3(pro) of Dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic region of NS2B. The Journal of Biological Chemistry. 272, 30715-30723.
Droll, D. A., Murthy, H. M., and Chambers, T. J. (2000). Yellow fever virus NS2B-NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Viology. 275, 335-347.
Falgout, B., Pethel, M., Zhang, Y. M., and Lai, C. J. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. Journal of Virology. 65, 2467-75.
Falgout, B., Miller, R. H., and Lai, C. J. (1993). Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. Journal of Virology. 67, 2034-42.
Falgout, B., and Markoff, L. (1995). Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. Journal of Virology. 69. 7232-43.
Gorbalenya, A. E., Donchenko, A. P., Koonin, E. V., and Blinov, V. M. (1989). N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Research. 17, 3889-97.
Gubler, D. J. (1998). Dengue and Dengue hemorrhagic fever. Clinical Microbiology Review. 11, 480-496.
Hsu, S. C., Yan, B. S., Pan, J. M., and Syu, W. J. (1997). Monoclonal antibody reacts with maltose-bindind protein of Escherichia coli and reacted enteric bacteria. Journal of Immunological Methods. 204, 169-174.
Hsu, S. C., Lin, H. P., Wu, J. C., Ko, K. L., Sheen, I. J., Yan, B. S., Chou, C. K., and Syu, W. J. (2000). Characterization of a strain-specific monoclonal antibody to hepatitis delta virus antigen. Journal of Virological Methods. 87, 53-62.
Irie, K., Mohan, P. M., Sasaguri, Y., Putnak, R., and Padmanabhan, R. (1989). Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene .75, 197-211
Kakiuchi, N., Nishikawa, S., Hattori, M., and Shimotohno, K. (1999). A high throughput assay of the hepatitis C virus nonstructural protein 3 serine proteinase. Journal of Virological Method. 80, 77-84.
Leyssen, P., De Clercq, G., and Neyts, J. (2000). Perspectives for the treatment of infections with Flaviviridae. Clinical Microbiology Reviews. 13, 67-82.
Lin, C., Amberg, S. M., Chambers, T. J., and Rice, C. M. (1993). Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. Journal of Virology. 67, 2327-35.
Lin, C., Thomson, J. A., and Rice, C. M. (1995). A central region in the hepatitis C virus NS4A protein allows formation of an active NS3-NS4A serine proteinase complex in vivo and in vitro. Journal of Virology. 69, 4373-4380.
Lobigs, M. (1993). Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proceedings of the National Academy of Sciences of the United States of America. 90, 6218-22.
Markoff, L. (1989). In vitro processing of dengue virus structural proteins: cleavage of the pre-membrane protein. Journal of Virology. 63, 3345-52.
Murthy, H. M., Clum, S., and Padmanabhan, R. (1999). Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. Journal of Biological Chemistry. 274, 5573-80.
Nowak, T., Farber, P. M., Wengler, G., Wengler, G. (1989). Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology. 169, 365-76.
Preugschat, F., Yao, C. W., and Strauss, J. H. (1990). In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. Journal of Virology. 64, 4364-74.
Preugschat, F., and Strauss, J. H. (1991). Processing of nonstructural proteins NS4A and NS4B of dengue 2 virus in vitro and in vivo. Virology 185, 689-97.
Randolph, V. B., and Stollar, V. (1990). Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. Journal of General Virology. 71 ( Pt 8) , 1845-50.
Steinkühler, C., Urbani, A., Tomei, L., Biasiol, G., Sardana, M., Bianchi, E., Pessi, A., and Francesco, R. (1996). Activity of purified hepatitis C virus protease NS3 on peptide substrates. Journal of Virology. 70, 6694-6700.
Sudo, K., Inoue, H., Shimizu, Y., Yamaji, K., Konno, K., Shigeta, S., Kaneko, T., Yokota. T., and Shimotohno, K. (1996). Establishment of an in vitro assay system for screening hepatitis C virus protease inhibitors using high performance liquid chromatography. Antiviral Research. 32, 9-18.
Svitkin, Y. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I. (1984). Differences between translation products of tick-borne encephalitis virus RNA in cell-free systems from Krebs-2 cells and rabbit reticulocytes: involvement of membranes in the processing of nascent precursors of flavivirus structural proteins. Virology. 135, 536-41.
Takeshita, N., Kakiuchi, N., Kanazawa, T., Komoda, Y., Nishizawa, M., Tani, T., and Shimotohno, K. (1997). An enzyme-linked immunosorbent assay for detecting proteolytic activity of hepatitis C virus proteinase. Analytical Biochemistry. 247, 242-246.
Teo, K. F., and Wright, P. J. (1997). Internal proteolysis of the NS3 protein specified by dengue virus 2. Journal of General Virology. 78 , 337-41.
Yusof, R., Clum, S., Wetzel, M., Murthy, H. M., and Padmanabhan, R. (2000). Purified NS2B/NS3 serine protease of Dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. The Journal of Biological Chemistry. 275, 9963-9969.
Wengler, G., Czaya, G., Farber, P. M., and Hegemann, J. H. (1991). In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids. Journal of General Virology. 72 , 851-8.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔