跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 17:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫俊仁
研究生(外文):Jun-Ren Sun
論文名稱:以指標細胞株作單純疹病毒之即時分型及藥物感受度試驗
論文名稱(外文):Indicator Cell Lines for Real-Time Typing and Antiviral Susceptibility Testing of Herpes Simplex Virus
指導教授:龔思豪
指導教授(外文):Szu-Hao Kung
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:120
中文關鍵詞:單純疹病毒指標細胞株藥物感受度試驗鹼性去磷酸綠色螢光蛋白內部核醣體進入區聚合連鎖反應
外文關鍵詞:HSVIndicator Cell LinesAntiviral Susceptibility TestingSecreted alkaline phosphatase (SEAP)Green fluorescenct protein (GFP)Internal ribosome entry site (IRES)Polymerase chain reaction (PCR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
單純疹病毒(HSV)可以在像是愛滋病患或器官移植的免疫缺陷病人造成疾病。它可以被區分成兩個血清型,分別為HSV-1及HSV-2。因為這兩個血清型造成的病徵及對藥物的感受度是不同的,所以有分型的必要性。另外,在一些經常使用acyclovir(ACV)的病人,常會產生抗藥性病毒株。目前用來區分血清型及偵測藥物抗性的方法分別為免疫螢光染色法(IFA)及溶斑減少法(PRA),而這兩個方法必須經人工方式肉眼觀察細胞病變(CPE)並且需耗費較長的時間。所以,我們希望能以指標細胞株來改善這些問題。
我們建立了兩株可以被單純疹病毒所感染的指標細胞株(BHK及CHO指標細胞株)。這兩株指標細胞株的建立方式為穩定轉染送入一質體含有兩個報導基因,分別為分泌性鹼性去磷酸(SEAP)及綠色螢光蛋白(GFP) 並且由單純疹病毒的啟動子所控制誘發。所使用的啟動子是來自單純疹病毒第二型的ICP10基因,它可以在感染早期被激活。所選用的兩個細胞株是幼倉鼠腎纖維細胞(BHK)及中華倉鼠卵巢細胞(CHO),BHK細胞無論是HSV-1或HSV-2都可以感染,而CHO細胞則是只被HSV-2感染。
我們亦建立一套敏感和專一性極高的聚合鏈反應(PCR)方式來偵測並區分HSV血清型,以便可以確認指標細胞株的結果。以這PCR方式分析了140株檢體,預測陽性率及預測陰性率均為100%。
這兩株指標細胞株可以直接利用倒立螢光顯微鏡觀察,以區分血清型。我們共測試了35個已知血清型的臨床檢體,及和臨床實驗室進行雙盲試驗測試159株檢體,發現預測陽性率為100%及預測陰性率為99.3%,並發現有一株檢體其血清型難以判讀。BHK指標細胞株在被病毒感染後會產生高量的SEAP釋放於上清液中,所以可以直接以化學冷光方式偵測SEAP表現量。以104 溶斑形成單位 (PFU)以下的病毒量感染24小時後所表現出的SEAP表現量具有極佳的線性關係而且靈敏度可以偵測到1PFU。因為SEAP表現量代表溶斑數目,所以BHK指標細胞株可以發展成一套測試藥物感受度試驗的方法。以此方法測試了32株抗ACV的單純疹病毒株證明了這方法可以精準地確認病毒的藥物感受度。這個方法只需要10 PFU量的病毒在48小時後即可得知結果,然而傳統方法(PRA)則需要25 PFU量的病毒,且需耗時7天以上。
所以,這套指標細胞株的系統可以及時區分血清型,而且可以快速篩選病毒的藥物感受度,最後亦具有發展成自動化的潛力。

Herpes simplex virus (HSV) causes serious diseases in immunocompromised patients, such as those with AIDS or receiving transplants. There are two serotypes, HSV-1 and HSV-2, for which a correct typing is essential due to their distinct modes of pathogenesis and different responses to antiviral administration. Moreover, prolonged treatment with antiviral drug, with acyclovir (ACV) being the most frequently used, has led to the appearance of ACV-resistant mutants. Currently existing methods for serotyping and determination of antiviral resistance, namely the immunofluorescence assay and plaque reduction assay (PRA) respectively, have been suffered from subjective observation for the cytopathic effect (CPE) and lengthy turn-around time. Thus we sought to resolve the problems by developing indicator cell lines as follows.
Two indicator cell lines (BHK and CHO) that responds to infection by herpes simplex virus (HSV) were established. These cell lines were constructed by stable transfection of cells with an expression cassette that contains dual reporter genes, the secreted alkaline phosphatase (SEAP) and the green fluorescent protein (GFP), under the control of an HSV-inducible promoter. The promoter was from the upstream region of the HSV-2 ICP10 gene, an early gene promoter that is activated in the early phase of HSV infection. The baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines in the light of the findings that the former is permissive for both HSV-1 and -2, whereas the latter is only susceptible to infection by HSV-2.
A sensitive and specific PCR assay was designed for detection and typing of HSV to confirm the results assayed by the indicator lines. The PCR assay was used to analyze a total of 140 specimens, achieving 100% predictive positive value and 100% predictive negative value.
These indicator lines permitted differential diagnosis of HSV-1 and -2 by observation of GFP-positive cell under an inverted fluorescent microscope. The result was substantiated with 35 identified clinical specimens, as well as 159 unidentified specimens in the double-blind clinical evaluation. The data revealed an 100% predictive positive value and a 99.3% predictive negative value, with a specimen refractory to typing. In addition, the BHK indicator cell line secretes high level of the SEAP in the supernatants following infection, as measured by a chemiluminescence-based assay. The detection system is sensitive to an HSV titer as low as a single plaque-forming unit (PFU), with a linear range up to 104 PFU inoculum after infection for 24 h. The BHK indicator cell line was then utilized to develop an assay for determination of antiviral susceptibility given that the induced SEAP activity appeared to reflect the numbers of plaque. Evaluations of the stable line with 32 representative ACV-resistant HSV isolates demonstrated that their drug susceptibilities were accurately determined. The protocol required only 10 PFU virus input in a 48 h format , which otherwise takes 25 PFU inoculum for at least 7 days by a standard PRA.
In summary, this novel indicator cell system is a useful means for serotyping of HSV in real-time, as well as a rapid screening method for determination of anti-HSV susceptibilities, with the potential to development of an automated assay.

略字表 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·Ι
中文摘要 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
英文摘要 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3
第一章 緒論
第一節 單純疹病毒的基本特性 · · · · · · · · · · · · · · · · · ·5
第二節 研究緣由與目的 · · · · · · · · · · · · · · · · · · · · · · · ·15
第三節 實驗設計 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·19
第二章 研究材料與實驗方法
第一節 單純疹病毒的培養與定量 · · · · · · · · · · · · · · ·23
第二節 指標細胞株之建立· · · · · · · · · · · · · · · · · · · · · · · ·27
第三節 建立聚合連鎖反應(PCR)方法以區分單純疹
病毒血清型 · · · · · · · · · · ·39
第四節 指標細胞株之臨床試驗 · · · · · · · · · · · · · · · · · ·44
第五節 抗藥性單純診病毒株之分離及新穎
藥物感受度試驗之建立· · · · · · · · · · · · · 45
第三章 實驗結果
第一節 指標細胞株之建立 · · · · · · · · · · · · · · ·· · · · · 48
第二節 BHK&CHO指標細胞株之特性測試 ·· · · · · 50
第三節 建立聚合連鎖反應(PCR)方法以區分
單純疹病毒血清型 · · · · · · · · · · ·53
第四節 指標細胞株之臨床試驗 ·· · · · · · · · · · · · · · · · ··55
第五節 以BHK指標細胞株進行藥物感受度試驗 · · ·57
第四章 討論 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·· · · · · 58
第五章 表 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·67
第六章 圖 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·74
第七章 附錄 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·96
第八章 參考文獻 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·99
圖 表 目 錄

ALAM, J., and COOK, J. L. (1990). Reporter genes: application to the study of mammalian gene transcription. Anal Biochem 188(2), 245-54.
ARVIN, A. M., and PROBER, C. G. (1997). Herpes simplex virus type 2--a persistent problem. N Engl J Med 337(16), 1158-9.
ASHLEY, R. L. (1999). Herpes Simplex Viruses Types 1 and 2. In "Laboratory Diagosis of Viral Infections, 3th ed" (T. F. S. Edwin H. Lennette, Ed.), pp. 489-513, New York.
BRONSTEIN, I., FORTIN, J. J., VOYTA, J. C., JUO, R. R., EDWARDS, B., OLESEN, C. E., LIJAM, N., and KRICKA, L. J. (1994). Chemiluminescent reporter gene assays: sensitive detection of the GUS and SEAP gene products. Biotechniques 17(1), 172-4, 176-7.
BURNS, W. H., SANAT R., AND SANTOS G.W . (1982). Isolation and charaterization of resistant herpes simpex virus after acyclovir therapy. Lancet 1, 421-424.
CASSADY, K. A., and WHITLEY, R. J. (1997). New therapeutic approaches to the alphaherpesvirus infections. J Antimicrob Chemother 39(2), 119-28.
CLEATOR, G. M., and KLAPPER, P. E. (2000). Herpes Simplex. In "Principles and Practice of Clinical Virology, 4th ed" (A.J.Zuckerman, J. E. Banatvala, and J. R. Pattison, Eds.), pp. 23-45, New York.
CLEMENTS, J. B., EASTON ANDRW J., RIXON FRAZER J. (1981). Transcription of the viral DNA. In "Herpesvirus DNA" (Y. Becker, Ed.), pp. 27-42, Hague.
COLLINS P., D., G. (1991). Laboratory studies of herpes simplex virus strains resistant to acyclovir. Rev. Med. Virol. 1, 19-28.
CORMACK, B. P., VALDIVIA, R. H., and FALKOW, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1(Spec No)), 33-8.
CRUNPACKER, C. S., SCHNIPPER L.E., MARLOWE S.I., KOWALSKY P.N., HERSHEY B.J., AND LEVIN M.J. (1982). Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with acyclovir. N. Engl. J. Med. 306, 343-346.
CULLEN B.R., M. M. H. (1992). Secreted placental alkaline phosphatase as a eukaryotic reporter gene. Methods Enzymol. 216, 362-8.
CUSINI, M., and GHISLANZONI, M. (2001). The importance of diagnosing genital herpes. J Antimicrob Chemother 47 Suppl T1, 9-16.
DAVIS, T. R., TROTTER K.M., GRANADOS R.R., WOOD H.A. (1992). Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Biotechnology (N Y). 10(10), 1148-50.
DORSKY, D. I., WELLS M., HARRINGTON R.D.. (1996). Detection of HIV-1 infection with a green fluorescent protein reporter system. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 13(4), 308-313.
ELION, J. A., KELLER P.M., FURMAN P.A., MILLER R.L., ELION G.B. (1978). Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J. Bio. Chem 253, 8721-7.
FELBER, B. K., and PAVLAKIS, G. N. (1988). A quantitative bioassay for HIV-1 based on trans-activation. Science 239(4836), 184-7.
FOSTER, T. P., RYBACHUK, G. V., and KOUSOULAS, K. G. (1998). Expression of the enhanced green fluorescent protein by herpes simplex virus type 1 (HSV-1) as an in vitro or in vivo marker for virus entry and replication. J Virol Methods 75(2), 151-60.
GADLER, H. (1983). Nucleic acid hybridization for measurement of effects of antiviral compounds on human cytomegalovirus DNA replication. Antimicrob Agents Chemother 24(3), 370-4.
GADLER, H., LARSSON, A., and SOLVER, E. (1984). Nucleic acid hybridization, a method to determine effects of antiviral compounds on herpes simplex virus type 1 DNA synthesis. Antiviral Res 4(1-2), 63-70.
GERAGHTY, R. J., JOGGER, C. R., and SPEAR, P. G. (2000). Cellular expression of alphaherpesvirus gD interferes with entry of homologous and heterologous alphaherpesviruses by blocking access to a shared gD receptor. Virology 268(1), 147-58.
GERAGHTY, R. J., KRUMMENACHER, C., COHEN, G. H., EISENBERG, R. J., and SPEAR, P. G. (1998). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280(5369), 1618-20.
GERVAIX, A., WEST, D., LEONI, L. M., RICHMAN, D. D., WONG-STAAL, F., and CORBEIL, J. (1997). A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci U S A 94(9), 4653-8.
GIBBS, J. S., CHIOU, H. C., BASTOW, K. F., CHENG, Y. C., and COEN, D. M. (1988). Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proc Natl Acad Sci U S A 85(18), 6672-6.
HEIM, R., PRASHER, D. C., and TSIEN, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91(26), 12501-4.
HUKKANEN, V., REHN, T., KAJANDER, R., SJOROOS, M., and WARIS, M. (2000). Time-resolved fluorometry PCR assay for rapid detection of herpes simplex virus in cerebrospinal fluid. J Clin Microbiol 38(9), 3214-8.
JOSEPH, C. G., MARY ANN BENDER, WILLIAM F. GOINS, NEAL DELUCA, DAVID J. FINK. (1995). Herpes simplex virus as a gene-delivery vector for the central nervous system. In "Viral Vectors. Gene Therapy and Neuroscience Applications" (A. D. L. Michael G. Kaplitt, Ed.), pp. 1-23, New York.
KIMURA, H., SHIBATA, M., KUZUSHIMA, K., NISHIKAWA, K., NISHIYAMA, Y., and MORISHIMA, T. (1990). Detection and direct typing of herpes simplex virus by polymerase chain reaction. Med Microbiol Immunol (Berl) 179(4), 177-84.
KRUMMENACHER, C., NICOLA, A. V., WHITBECK, J. C., LOU, H., HOU, W., LAMBRIS, J. D., GERAGHTY, R. J., SPEAR, P. G., COHEN, G. H., and EISENBERG, R. J. (1998). Herpes simplex virus glycoprotein D can bind to poliovirus receptor- related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 72(9), 7064-74.
KUNG, S. H., WANG, Y. C., LIN, C. H., KUO, R. L., and LIU, W. T. (2000). Rapid diagnosis and quantification of herpes simplex virus with a green fluorescent protein reporter system. J Virol Methods 90(2), 205-12.
LAKEMAN, F. D., and WHITLEY, R. J. (1995). Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis 171(4), 857-63.
LANGLOIS, M., ALLARD, J. P., NUGIER, F., and AYMARD, M. (1986). A rapid and automated colorimetric assay for evaluating the sensitivity of herpes simplex strains to antiviral drugs. J Biol Stand 14(3), 201-11.
LEAHY, B. J., CHRISTIANSEN, K. J., and SHELLAM, G. (1994). Standardisation of a microplate in situ ELISA (MISE-test) for the susceptibility testing of herpes simplex virus to acyclovir. J Virol Methods 48(1), 93-108.
LIESEGANG, T. J. (2001). Herpes simplex virus epidemiology and ocular importance. Cornea 20(1), 1-13.
MARTIN J.L., B. C. E., MATTHEWS-DAVIS N., REARDON J.E. (1994). Effects of antiviral nucleoside analogs on human DNA polymerase and mitochondrial DNA synthesis. Antimicrob. Agents Chemother. 38, 2743-2749.
MCGEOCH, D. J., CUNNINGHAM,C., MCINTYRE,G. AND DOLAN,A. (1991). Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J. Gen. Virol 72(Pt 12), 3057-3075.
MIZUGUCHI, H., XU, Z., ISHII-WATABE, A., UCHIDA, E., and HAYAKAWA, T. (2000). IRES-dependent second gene expression is significantly lower than cap- dependent first gene expression in a bicistronic vector. Mol Ther 1(4), 376-82.
NAHMIAS, A. J., KEYSERLING H.L. (1983). Infectious disease of the fetus and newborn infant. In "Philadelphia" (Remington JS. Klein JO, Ed.), pp. 636-678, WS Saunders.
OLIVO, P. D. (1994). Detection of herpes simplex virus by measurement of luciferase activity in an infected-cell lysate. J. Virol. Methods. 47(1-2), 117-28.
OLIVO, P. D. (1996). Transgenic cell lines for detection of animal viruses. Clin Microbiol Rev 9(3), 321-34.
OLIVO, P. D., CHALLBERG MARK D. (1991). Functional analysis of the herpes simplex virus gene products involved in DNA replication. In "Herpesvirus Transcription and Its Regulation" (D. K. Wagner, Ed.), pp. 137-150, Florida.
PATEL, N., KAUFFMANN, L., BANIEWICZ, G., FORMAN, M., EVANS, M., and SCHOLL, D. (1999). Confirmation of low-titer, herpes simplex virus-positive specimen results by the enzyme-linked virus-inducible system (ELVIS) using PCR and repeat testing. J Clin Microbiol 37(12), 3986-9.
PAVIC, I., HARTMANN, A., ZIMMERMANN, A., MICHEL, D., HAMPL, W., SCHLEYER, I., and MERTENS, T. (1997). Flow cytometric analysis of herpes simplex virus type 1 susceptibility to acyclovir, ganciclovir, and foscarnet. Antimicrob Agents Chemother 41(12), 2686-92.
PLUMMER, G. (1964). Serological comparison of the herpes virus. Brit. J. Exp. 45, 135-141.
RABALAIS, G. P., LEVIN, M. J., and BERKOWITZ, F. E. (1987). Rapid herpes simplex virus susceptibility testing using an enzyme- linked immunosorbent assay performed in situ on fixed virus-infected monolayers. Antimicrob Agents Chemother 31(6), 946-8.
RAJCANI, J., and VOJVODOVA, A. (1998). The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virol 42(2), 103-18.
SACHS, A. B., SARNOW, P., and HENTZE, M. W. (1997). Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89(6), 831-8.
SARAL, R., BURNS W.H., LASKIN O.L., SANTOS G.W., LIETMAN P.S. (1981). Acyclovir prophylaxis of herpes-simplex virus infections. N. Eng. J. Med. 305, 63-67.
SARISKY, R. T., NGUYEN, T. T., DUFFY, K. E., WITTROCK, R. J., and LEARY, J. J. (2000). Difference in incidence of spontaneous mutations between Herpes simplex virus types 1 and 2. Antimicrob Agents Chemother 44(6), 1524-9.
SARISKY, R. T., QUAIL, M. R., CLARK, P. E., NGUYEN, T. T., HALSEY, W. S., WITTROCK, R. J., O'LEARY BARTUS, J., VAN HORN, M. M., SATHE, G. M., VAN HORN, S., KELLY, M. D., BACON, T. H., and LEARY, J. J. (2001). Characterization of herpes simplex viruses selected in culture for resistance to penciclovir or acyclovir. J Virol 75(4), 1761-9.
SHIEH, M. T., WUDUNN, D., MONTGOMERY, R. I., ESKO, J. D., and SPEAR, P. G. (1992). Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 116(5), 1273-81.
SHUKLA, D., LIU, J., BLAIKLOCK, P., SHWORAK, N. W., BAI, X., ESKO, J. D., COHEN, G. H., EISENBERG, R. J., ROSENBERG, R. D., and SPEAR, P. G. (1999). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99(1), 13-22.
SNOECK, R. (2000). Antiviral therapy of herpes simplex. Int J Antimicrob Agents 16(2), 157-9.
SPAETE, R. R., and MOCARSKI, E. S. (1987). Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc Natl Acad Sci U S A 84(20), 7213-7.
SPEAR, P. G., EISENBERG, R. J., and COHEN, G. H. (2000). Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275(1), 1-8.
STABELL, E. C., and OLIVO, P. D. (1992). Isolation of a cell line for rapid and sensitive histochemical assay for the detection of herpes simplex virus. J Virol Methods 38(2), 195-204.
STANBERRY, L. R., CUNNINGHAM, A. L., MINDEL, A., SCOTT, L. L., SPRUANCE, S. L., AOKI, F. Y., and LACEY, C. J. (2000). Prospects for control of herpes simplex virus disease through immunization. Clin Infect Dis 30(3), 549-66.
SUBRAMANIAN, G., MCCLAIN, D. S., PEREZ, A., and FULLER, A. O. (1994). Swine testis cells contain functional heparan sulfate but are defective in entry of herpes simplex virus. J Virol 68(9), 5667-76.
SWIERKOSZ, E. M., SCHOLL, D. R., VRAWN, J. L., JOLLICK, J. D. AND GLEAVES, C. A. (1987). Improved DNA hybridisation method for detection of acyclovir-resistant herpes simplex virus. Antimicrob. Agents Chemother. 31, 1456-69.
SZE, P., HERMAN RONALD C. (1992). The herpes simplex virus type 1 ICP6 gene is regulated by a 'leaky' early promoter. Virus Researh 26, 141-152.
TEBAS, P., SCHOLL, D., JOLLICK, J., MCHARG, K., ARENS, M., and OLIVO, P. D. (1998). A rapid assay to screen for drug-resistant herpes simplex virus. J Infect Dis 177(1), 217-20.
TREMBLAY, C., COUTLEE, F., WEISS, J., GUIBINGA, G. H., HANKINS, C., and LAPOINTE, N. (1997). Evaluation of a non-isotopic polymerase chain reaction assay for detection in clinical specimens of herpes simplex virus type 2 DNA. Canadian Women's HIV Study Group. Clin Diagn Virol 8(1), 53-62.
TUFARO, F. (1997). Virus entry: two receptors are better than one. Trends Microbiol 5(7), 257-8; discussion 258-9.
WARNER, M. S., GERAGHTY, R. J., MARTINEZ, W. M., MONTGOMERY, R. I., WHITBECK, J. C., XU, R., EISENBERG, R. J., COHEN, G. H., and SPEAR, P. G. (1998). A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246(1), 179-89.
WHITLEY, R. J. (1990). Herpes Simplex Virus. In "Fields Virology 2nd ed" (D. M. K. Bernard N. Field, Robert M. chanock, Martin S. Hirsch, Joseph L. Melnick, Thomas P. Monath, Bernard Roizman, Ed.), pp. 1843-1888, New York.
WHITLEY, R. J., GNANN J.W. JR. (1992). Acyclovir: a decade later. N. Engl. J. Med. 327(11), 782-9.
WYMER, J. P., APRHYS COLETTE M.J., CHUNG THEODORE D., FENG CHU-PEI, KULKA MICHAEL AND AURELIAN LAURE. (1992). Immediate early and functional AP-1 cis-response elements are involved in the transcriptional regulation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase(ICP10). Virus Research 23, 253-270.
WYMER, J. P., CHUNG, T. D., CHANG, Y. N., HAYWARD, G. S., and AURELIAN, L. (1989). Identification of immediate-early-type cis-response elements in the promoter for the ribonucleotide reductase large subunit from herpes simplex virus type 2. J Virol 63(6), 2773-84.
YANG, T. T., CHENG, L., and KAIN, S. R. (1996). Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res 24(22), 4592-3.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top