(3.232.129.123) 您好!臺灣時間:2021/03/04 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林微雅
研究生(外文):Wei-ya Lin
論文名稱:B型肝炎病毒蛋白HBx的表現對p53的功能、細胞存活及HPRT基因突變率之影響
論文名稱(外文):Effect of HBx protein on p53 function , cell survival and mutation frequency in HPRT gene
指導教授:陳一村
指導教授(外文):I-Tsuen Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
中文關鍵詞:B型肝炎基因突變
外文關鍵詞:HBxp53HPRTmutation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
B型肝炎病毒蛋白HBx一直被懷疑與肝癌的形成有很大關係,但詳細的機制尚未釐清。本論文主要是想研究HBx蛋白對p53蛋白的功能,細胞存活及HPRT基因突變率之影響。本研究是利用已建立的可受tetracycline調控之HBx可誘導性表達系統的HepG2-3X肝癌細胞株作為實驗模型。在實驗中發現HBx蛋白會促使細胞中的p53蛋白停滯於細胞質中,而且受紫外線活化的p53(Ser-15)蛋白之磷酸化現象會受到抑制。之後,利用p53報告基因活性實驗分析p53的轉活化能力,發現當HBx蛋白存在時,細胞中的p53之轉活化能力減低了50 % 。在總體性基因修補分析實驗中,當HBx蛋白存在時,不論細胞遭受單次或重複性紫外線照射,其移除損傷產物的能力皆受到阻礙,而且在有HBx蛋白時會提高細胞對紫外線傷害之敏感性。接著以MTS方法分析HBx蛋白是否會影響細胞對抗癌藥物cisplatin、adriamycin及taxol的敏感性。在HBx蛋白存在下,細胞對cisplatin及adriamycin的敏感性降低,而對taxol的敏感性則提高。在cisplatin處理下細胞p53蛋白磷酸化顯著增加,反之,p53蛋白磷酸化不受taxol影響。HBx蛋白似乎會減少細胞HPRT基因突變率,此部份結果及其作用機轉還有待進一步研究。

The hepatitis B virus X protein (HBx) is thought to be involved in the development of hepatocellular carcinoma (HCC) , but its exact role in HCC remains unclear. The purpose of this study was to investigate the effect of HBx on p53 function and the role of the HBx in cell survival and mutation frequency in HPRT gene in response to DNA damage. HepG2-3X hepatoma cell line that express HBx in a tetracycline inducible system was established previously in our laboratory and was applied for this study. When HBx protein was expressed in HepG2-3X, cytoplasmic retention of p53 protein was enhanced where level of phospho-p53 (Ser-15) protein activated by UV irradiation was abrogated. The p53-mediated transactivation ability was decreased to about 50 % in the presence of HBx protein in a reporter assay. Global genomic repair (GGR) assay showed that removal of DNA photo-products in the cells under either one or repeated UV exposure was reduced in the presence of HBx. Treatment of cells with UV or taxol resulted in decreased cell survival when HBx was expressed. In contrast, cells that expressed HBx were more resistant to cisplatin or adriamycin. p53 phosphorylation at serine-15 was increased in response to cisplatin treatment, but it remained unchanged when taxol was used. In the cells that expressed HBx, mutation frequency in HPRT gene was reduced. This result was unexpected and the reason for this is not clear at the present time.

目 錄
英文名詞對照表························3
中文摘要···························4
英文摘要···························5
緒論·····························6
一、B型肝炎病毒·······················6
二、HBx蛋白質························7
三、腫瘤抑制因子p53·····················8
四、核甘酸切除修護系統NER··················11
五、Tet-off gene expression system·············12
六、HPRT基因與基因突變頻率·················13
七、研究目的························14
實驗方法···························16
一、細胞的培養與處理····················16
二、反轉錄-聚合鏈反應·················17
三、西方墨點分析法·····················18
四、細胞質與細胞核蛋白之分布················20
五、p53蛋白之磷酸化····················21
六、p53轉活化能力分析···················22
七、總體性基因修補分析···················24
八、細胞存活率分析·····················26
九、HPRT基因突變分析····················27
十、統計方法························28
實驗結果···························29
討論·····························37
參考文獻···························45
圖表說明···························55
附錄·····························78
誌謝·····························85

蘇名儀:可誘導性B型肝炎病毒蛋白HBx對p53所引導的DNA修護力之影響。國立陽明大學醫學生物技術研究所碩士論文,2000。
Albertini RJ, Castle KL, and Borcherding WR. T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc. Natl. Acad. Sci. USA. 79: 6617-21, 1982
Arbuthnot P, Capovilla A, and Kew M. Putative role of hepatitis B virus X protein in hepatocarcinogenesis: effects on apoptosis, DNA repair, mitogen-activated protein kinase and JAK/STAT pathways. J. Gastroenterol. Hepatol. 15: 357-68, 2000
Bakalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, and Wiman KG. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. USA. 91: 413-7, 1994
Beasley RP, Hwang LY, Lin CC, and Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22707 men in Taiwan. Lancet. 2: 1129-33, 1981
Blagosklonny MV and Fojo T. Molecular effects of paclitaxel: myths and reality. Int. J. Cancer 83: 151-6, 1999
Bouck N. P53 and angiogenesis. Biochim. Biophys. Acta. 1287: 63-6, 1996
Branda RF, O'Neill JP, Jacobson-Kram D, and Albertini RJ. Factors influencing mutation at the hprt locus in T-lymphocytes: studies in normal women and women with benign and malignant breast masses. Environ. Mol. Mutagen. 19: 274-81, 1992
Brown JM, and Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59: 1391-9, 1999
Buchhop S, Gibson MK, Wang XW, Wagner P, Sturzbecher HW, and Harris CC. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res. 25: 3868-74, 1997
Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, and Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 377: 646-9, 1995
Capovilla A, Carmona S, and Arbuthnot P. Hepatitis B virus X-protein binds damaged DNA and sensitizes liver cells to ultraviolet irradiation. Biochem. Biophys. Res. Commun. 232: 255-60, 1997
Chene P, Fuchs J, Bohn J, Garcia-Echeverria C, Furet P, and Fabbro D. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. Biochem. Biophys. Res Commun. 299: 245-53, 2000
Chinault AC, and Caskey CT. The hypoxanthine phosphoribosyltrans
ferase gene: a model for the study of mutation in mammalian cells. Prog. Nucleic. Acid. Res. Mol. Biol. 31: 295-313, 1984
Cleaver JE. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. J Dermatol Sci. 23: 1-11, 2000
Cross JC, Wen P, and Rutter WJ. Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinases. Proc. Natl. Acad. Sci. USA 90: 8078-82, 1993 .
Dignam JD. Preparation of extracts from higher eukaryotes. Methods Enzymol. 182: 194-203,1990
Doong SL, Lin MH, Tsai MM, Li TR, Chuang SE, and Cheng AL. Transactivation of the human MDR1 gene by hepatitis B virus X gene product. J Hepatol. 29: 872-8, 1998
Doria M, Klein N, Lucito R, and Schneider RJ. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBO J. 14: 4747-57, 1995
El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, and Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 75: 817-25, 1993
Elmore LW, Hancock AR, Chang SF, Wang XW, Chang S, Callahan CP, Geller DA, Will H, and Harris CC. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc. Natl. Acad. Sci. USA 94: 14707-12, 1997
Fan J, and Bertino JR. Modulation of cisplatinum cytotoxicity by p53: effect of p53-mediated apoptosis and DNA repair. Mol. Pharmacol. 56: 966-72, 1999
Feitelson MA, Zhu M, Duan LX, and London WT. Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene. 8: 1109-17, 1993
Feitelson MA. Hepatitis B virus in hepatocarcinogenesis. J Cell Physiol. 181: 188-202, 1999
Ford JM, and Hanawalt PC. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J. Bio. Chem. 272: 28073-80, 1997
Funk WD, Pak DT, Karas RH, Wright WE, and Shay JW. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Bio. 12: 2866-71, 1992
Gjerset RA, Turla ST, Sobol RE, Scalise JJ, Mercola D, Collins H, and Hopkins PJ. Use of wild-type p53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53. Mol Carcinog. 14: 275-85, 1995
Gossen M, and Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89: 5547-51, 1992
Gottlieb TM, and Oren M. p53 in growth control and neoplasia. Biochim. Biophys. Acta. 1287: 77-102, 1996
Haruna Y, Hayashi N, Katayama K, Yuki N, Kasahara A, Sasaki Y, Fusamoto H, and Kamada T. Expression of X protein and hepatitis B virus replication in chronic hepatitis. Hepatology. 13: 417-21, 1991
Haviv I, Vaizel D, and Shaul Y. pX, the HBV-encoded coactivator, interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBO J. 15: 3413-20, 1996
Havre PA, Yuan J, Hedrick L, Cho KR, and Glazer PM. p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. Cancer Res. 55: 4420-4, 1995
Henkler FF, and Koshy R. Hepatitis B virus transcriptional activators: mechanisms and possible role in oncogenesis. J Viral Hepatitis. 3: 109-21, 1996
Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, and Vogelstein B. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell. 1: 3-11, 1997
Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, and Harris CC. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22: 3551-5.1994
Huang JC, Zamble DB, Reardon JT, Lippard SJ, and Sancar A. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl. Acad. Sci. USA. 91:10394-8, 1994
Jia L, Wang XW, and Harris CC. Hepatitis B virus X protein inhibits nucleotide excision repair. Int. J. Cancer. 80: 875-9, 1999
Jung M, Notario V, and Dritschilo A. Mutations in the p53 gene in radiation-sensitive and -resistant human squamous carcinoma cells. Cancer Res. 52: 6390-3, 1992
Kapoor M, Hamm R, Yan W, Taya Y, and Lozano G. Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene. 19: 358-64, 2000
Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, and Fornace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 71: 587-97, 1992
Kelland LR. Preclinical perspectives on platinum resistance. Drugs. 59 Suppl 4: 1-8; discussion 37-8, 2000
Kim CM, Koike K, Saito I, Miyamura T, and Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 351: 317-20, 1991
Kim CY, Tsai MH, Osmanian C, Graeber TG, Lee JE, Giffard RG, DiPaolo JA, Peehl DM, and Giaccia AJ. Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res. 57: 4200-4, 1997
Koike K, Moriya K, Iino S, Yotsuyanagi H, Endo Y, Miyamura T, and Kurokawa K. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology. 19: 810-9, 1994
Lakin ND, and Jackson SP. Regulation of p53 in response to DNA damage. Oncogene. 18: 7644-55, 1999
Lane DP. p53, guardian of the genome. Nature. 358:15-6, 1992
Lanni JS, Lowe SW, Licitra EJ, Liu JO, and Jacks T. p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc. Natl. Acad. Sci. USA. 94: 9679-83, 1997
Lee S, Elenbaas B, Levine A,. and Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell. 81: 1013-20, 1995
Lee YH, and Yun, Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem. 273: 25510-5, 1998
Levine AJ. The tumor suppressor genes. Ann. Rev. Biochem. 62: 623-51, 1993
Lowe SW, Ruley HE, Jacks T, and Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 74: 957-67, 1993
Lui WY, Chang YF, Li LL, Ho LK, Su TL, Chen JY, Liu TY, P'eng FK, and Chi CW. Differential paclitaxel-induced cytotoxicity in rodent and human hepatoma cell lines. Anticancer Res. 18: 3339-45, 1998
Madden CR, Finegold MJ, Slagle BL, Expression of hepatitis B virus X protein does not alter the accumulation of spontaneous mutations in transgenic mice. J. Virol. 74: 5266-72, 2000
Maguire HF, Hoeffler JP, and Siddiqui A. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science. 252: 842-4, 1991
May P, and May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene. 18: 7621-36, 1999
Melton DW, Konecki DS, Brennand J, and Caskey CT Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc. Natl. Acad. Sci. USA. 81: 2147-51, 1984
Miyashita T, and Reed JC, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80: 293-9, 1995
Mori T, Nakane M, Hattori T, Matsunaga T, Ihara M, Nikaido O. Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4)photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochem. Photobiol. 54:225-32, 1991
Murakami S. Hepatitis B virus X protein: structure, function and biology. Intervirology. 42: 81-99, 1999
Nakatake H, Chisaka O, Yamamoto S, Matsubara K, and Koshy R. Effect of X protein on transactivation of hepatitis B virus promoters and on viral replication. Virology. 195: 305-14, 1993
Natoli G, Avantaggiati ML, Chirillo P, De Marzio E, Collepardo D, Falco M, Balsano C, and Levrero M. Modulation of intracellular signal transduction pathways by the hepatitis B virus transactivator pX. J Hepatol. 22(1 Suppl): 14-20, 1995.
Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, and Kruzel E. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15: 3032-40, 1995
Pai GS, Sprenkle JA, Do TT, Mareni CE, and Migeon BR. Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of nonrandom X chromosome expression from studies of a human X-autosome translocation. Proc. Natl. Acad. Sci. USA. 77: 2810-3, 1980
Prost S, Bellamy CO, Cunningham DS, and Harrison DJ. Altered DNA repair and dysregulation of p53 in IRF-1 null hepatocytes. FASEB J. 12: 181-8, 1998
Qadri I, Maguire HF, and Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc. Natl. Acad. Sci. USA 92: 1003-7, 1995
Qadri I, Conaway JW, Conaway RC, Schaack J, and Siddiqui A. Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH. Proc. Natl. Acad. Sci. USA. 93: 10578-83, 1996
Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B, Shaw P, Berger R, Samarut J, Magaud JP, Ozturk M, Samarut C, and Puisieux A. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat. Genet. 14: 482-6, 1996
Rotter V, Aloni-Grinstein R, Schwartz D, Elkind NB, Simons A, Wolkowicz R, Lavigne M, Beserman P, Kapon A, Goldfinger N. Does wild-type p53 play a role in normal cell differentiation?. Semin. Cancer Biol. 5: 229-36.1994
Shieh SY, Ikeda M, Taya Y, and Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 91: 325-34, 1997
Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, and Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11: 3471-81, 1997
Smith ML, Chen IT, Zhan Q, O'Connor PM, and Fornace AJ. Jr. Involvement of the p53 tumor suppressor in repair of UV-type DNA damage. Oncogene. 10:1053-9, 1995
Stewart ZA, Tang LJ, and Pietenpol JA. Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor- and cell-specific manner. Oncogene. 20: 113-24, 2001
Stout JT, and Caskey CT. HPRT: gene structure, expression, and mutation. Annu. Rev. Genet. 19: 127-48, 1985
Su F, and Schneider RJ. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol. 70: 4558-66, 1996
Suquet C, Mitchell DL, and Smerdon MJ. Repair of UV-induced (6-4) photoproducts in nucleosome core DNA. J. Biol. Chem. 270: 16507-9, 1995
Takada S, Kaneniwa N, Tsuchida N, and Koike K. Cytoplasmic retention of the p53 tumor suppressor gene product is observed in the hepatitis B virus X gene-transfected cells. Oncogene. 15: 1895-901, 1997
Terradillos O, Billet O, Renard CA, Levy R, Molina T, Briand P, and Buendia MA. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice. Oncogene. 14: 395-404, 1997
Tiollais P, Pourcel C, and Dejean A. The hepatitis B virus. Nature. 317: 489-95, 1985
Tornaletti S, and Pfeifer GP. UV damage and repair mechanisms in mammalian cells. BioEssays. 18:221-8, 1996
Ueda H, Ullrich SJ, Gangemi JD, Kappel CA, Ngo L, Feitelson MA, and Jay G. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat. Genet. 9: 41-7, 1995
Utrera R, Collavin L, Lazarevic D, Delia D, and Schneider C. A novel p53-inducible gene coding for a microtubule-localized protein with G2-phase-specific expression. EMBO J. 17: 5015-25, 1998
Vousden KH. p53: death star. Cell. 103: 691-4, 2000
Wang CI and Taylor JS Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications. Proc. Natl. Acad. Sci. USA 88: 9072-6, 1991
Wang CY, Mayo MW, and Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB.. Science. 274: 784-7, 1996
Wang WL, London WT, and Feitelson MA. Hepatitis B x antigen in hepatitis B virus carrier patients with liver cancer. Cancer Res. 51: 4971-7, 1991
Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, and Harris CC. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 91: 2230-4, 1994
Wang XW, Gibson MK, Vermeulen W, Yeh H, Forrester K, Sturzbecher HW, Hoeijmakers JH, and Harris CC. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res. 55: 6012-6, 1995
Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Freidberg EC, Evans MK, and Taffe BG. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat. Genet. 10: 188-95, 1995
Wynford-Thomas D. Cellular senescence and cancer. J. Pathol. 187: 100-11, 1999
Xiao H, Pearson A, Coulombe B, Truant R, Zhang S, Regier JL, Triezenberg SJ, Reinberg D, Flores O, and Ingles CJ. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell Biol. 14: 7013-24, 1994
Yuan J, Yeasky TM, Havre PA., and Glazer PM. Induction of p53 in mouse cells decreases mutagenesis by UV radiation. Carcinogenesis. 16:2295-300, 1995
Yu ZK, Geyer RK, and Maki CG. MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene. 19: 5892-7, 2000

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔