(3.239.33.139) 您好!臺灣時間:2021/03/07 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭安成
研究生(外文):Shiau An-Cheng
論文名稱:原級標準鈷60水中劑量之量測
論文名稱(外文):Ionometric Determination of Absorbed Dose to Water for Cobalt-60 Gamma Rays
指導教授:陳為立
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:96
中文關鍵詞:吸收劑量游離腔鈷60原級標準
外文關鍵詞:absorbed dosecavity ionization chamberCo-60standards
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
準確的量測游離輻射在生物體內所造成的劑量是十分重要的工作。要精確計算人體內所接受的輻射劑量,可以用游離腔在水假體中以同樣的照射條件來模擬。但是游離腔量測到的電量訊號必須經過準確的轉換因子的計算,才能得到劑量的單位。早期,要求得這些轉換因子,游離腔必須在國家游離輻射標準實驗室經過鈷60射束空氣克馬(air Kerma)校驗法校驗得到鈷60射束空氣克馬轉換因子,再藉由某些經過仔細驗證過的劑量計算議定書;像是美國醫學物理師協會(American Association of Physicists in Medicine, AAPM)於1984年發表的TG-21號議定書;根據實際射束的射質及量測儀器的材料,逐項求得不同的轉換因子。但是此種複雜的轉換方法使得不確定度高達4%。1999年美國醫學物理師協會發表TG-51號議定書,將此過程簡化,直接由國家游離輻射標準實驗室提供使用者游離腔的鈷60水中劑量轉換因子,藉以降低不確定度。據此,本研究與國家游離輻射標準實驗室研究人員合作,以原級方式製作圓盤狀平行板式游離腔,仔細求得各項修正因子後,置於水假體中直接量取標準實驗室的鈷60水中劑量。經過比對的過程,將此游離腔定為日後鈷60水中劑量校驗的原級標準件。本研究之進行將可提升國內游離輻射吸收劑量計算的準確度。尤其對高能放射治療,在劑量分布日求精確的同時,本研究將有助於醫療品質的提昇。

In the field of ionizing radiations, the absorbed dose is closely related to the biological effects of radiation. Accurately determine the absorbed dose to a human body is very important. Water is of special interest as an absorbing material because it is very similar to human tissue. So, the absorbed dose to human tissue may be obtained by measuring the dose distribution in water under same condition. For clinical reference dosimetry of external beam radiation therapy, a protocol written by Task Group 51 of the Radiation Therapy Committee of the American Association of Physicists in Medicine (AAPM) uses ion chamber with absorbed-dose-to-water calibration factor, which is traceable to national primary standards. This protocol represents a major simplification compared to the AAPM’s TG-21 protocol in the sense that large tables of stopping-power ratios and mass-energy absorption coefficients are not needed and the user dose not need to calculate any theoretical dosimetry factors. According the requirement, one of the duties of the national standards laboratory is to establish standards for absorbed dose to water. This study cooperate with national standards laboratory for developing an ionometric dosimetry system for the determination of absorbed dose to water for Co-60 gamma rays, which will be the national primary standard. This system consists of a cubic perspex water phantom and a graphite cylindrical ionization chamber. Reliable estimation of the perturbation corrections, which account for the presence of the chamber inside the water phantom, allows an accurate determination of absorbed dose. This study may improve the accuracy of calibrating photon and electron beams for radiation therapy.

1.前言 -----------------------------------------------5
2.原級標準輻射度量 -----------------------------------8
2.1卡計 --------------------------------------------8
2.2游離腔 ------------------------------------------12
2.2.1游離腔輻射度量原理 ---------------------------12
2.2.2空氣克馬度量原理 -----------------------------18
2.2.3水中吸收劑量度量原理 -------------------------24
3.游離腔之結構與性能 ---------------------------------27
3.1 游離腔構造 -------------------------------------27
3.2 游離腔空腔體積----------------------------------28
3.3 游離腔性能 -------------------------------------34
4.水假體及水密封套之設計 -----------------------------37
5.空氣克馬之測量 -------------------------------------40
5.1修正因子及物理參數-------------------------------40
5.2量測結果與比對 ----------------------------------45
6.水中吸收劑量之測量 ---------------------------------51
6.1修正因子及物理參數 ------------------------------52
6.2量測結果與比對 ----------------------------------54
7. 比對與不確定度分析 --------------------------------58
8. 討論 ----------------------------------------------63
9. 結論 ----------------------------------------------66
參考文獻 ---------------------------------------------67
附錄一 -----------------------------------------------70
附錄二 -----------------------------------------------72

1. AAPM, “A protocol for determination of absorbed dose from high-energy photon and electron beams” Med. Phys. 10 741-71 (1983).
2. IAEA, “Absorbed dose determination in photon and electron beams” IAEA Technical Report 277 (1987 ), (Vienna: IAEA)
3. P.R. Almond, P. J. Biggs, B. M. Coursey, W.F. Hanson, M. S. Huq, R. Nath, And D. W. O. Rogers, “ AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams, “ Med. Phys. 26, 1847-1870 (1999).
4. M. Boutillon and A. M. Perrochet, “ Ionometric determination of absorbed dose to water for colalt-60 gamma rays,” Phys. Med. Biol. 38, 439-454 (1993).
5. International Electronic Commission 60731 (1997)
6. S. R. Domen, “Absorbed dose water calorimeter” Med. Phys. 7 157-9 (1980).
7. S. R. Domen “An absorbed dose water calorimeter: theory, design, and performance” J. Res. NBS 87 211-35 (1982).
8. S. R. Domen “A sealed water calorimeter for measuring absorbed dose” J. Res. Natl Inst. Stand. Tech. 99 121-41 (1994).
9. J. S. Laughlin and S. Genna “Calorimetry Radiation Dosimetry vol II”, ed F. H. Attix and W. C. Roesch ( New York: Academic) pp 389-441 (1966).
10. S. R. Domen “Advances in calorimetry for radiation dosimetry” The Dosimetry of Ionizing Radiation vol II, ed K. R. Kase, B. E. Bjarngard and F. H. Attix ( Orlando, FL: Academic) pp 245-320 (1987).
11. C. K. Ross and N. V. Klassen “Water calorimetry for radiation dosimetry” Phys. Meds. Biol. 41 1-29 (1996).
12. AIP, A Physicist’s Desk Reference: The Second Edition of Physics Vade Mecum ed H L Anderson ( New York: American Institute of Physics ) pp 37-9, (1989).
13. H. E. Johns and J. R. Cunningham “ The Physics of Radiology “ ( Springfield, IL: Thomas ) P 329 (1978).
14. E. McLaughlin “Thermal conductivity of liquids and dense gases”, Chem. Rev. 64, 389-428 (1964)
15. M. G. Velarde and C. Normand “Convection” Sci. Am. 243(1): 93-; 1980 July.
16. C. K. Ross, N. V. Klasson , K. R. Shortt and G. D. Smith “A direct comparison of water calorimeter and Fricke dosimetry” Phys. Med. Biol. 34 23-42 (1989).
17. J. W. Fletcher “Radiation Chemistry of water at low dose rates---emphasis on the energy balance: a computer study” AECL, Chalk River Nuclear Laboratories AECL-7834 (1982).
18. C. K. Ross , N. V. Klasson and G. D. Smith “The effects of various dissolved gases on the heat defect of water”. Med. Phys. 11 653-8 (1984).
19. N. V. Klason , K. R. Shortt and C. K. Ross “Calibration of Fricke dosimetry by water calorimetry” Proc. 7th Tihany Symp. On Radiation Chemistry ( Balatonszeplak, 1990) ( Budapest: Hungarian Chemistry Society) pp 543-7 (1991).
20. N. V. Klasson and C. K. Ross “Water Calorimetry: The Heat Defect” J. Res. Natl. Inst. Stand. Technol. 102, 63-74 (1997).
21. W. H. Brag “Consequences of the corpuscular hypothesis of the gamma and x rays, and the ranges of beta rays” Phil. Mag. 20, 385 (1910).
22. L. H. Gray. “Absorption of penetrating radiation” Proc. Roy. Soc. (London) A122, 647 (1929).
23. L. H.Gray” Ionization method for the absolute measurement of gamma-ray energy “ Proc. Roy. Soc. (London) A156, 578 (1936).
24. F. H. Attix and De La Vergene, L. “Cavity ionization as a function of wall material” J. Res. NBS 60,235 (1958).
25. L. V. Spencer and F. H. Attix “ A theory of cavity ionization “ Rad. Res. 3, 239 (1955).
26. L. V. Spencer “ Note on the theory of ionization chambers “ Rad. Res. 25, 352 (1965).
27. L. V. Spencer. “Remarks on the theory of energy deposition in cavities” Acta Radiol. 10, 1 (1971).
28. A. Allisy, Metrologia “ 3, 41 ( 1967 ). and Recueil de Travaux du Bureau International des Poids et Measures, 1 ( 1966-1967 ).
29. L.V. Spencer, U.S. Nat. Bur. Stand., Monograpg 1 (1959)
30. M. Boutillon, : Comite. International des Poids et Measures, Proces-Verbaux 36, 64 ( 1968 )
31. J. W. Boag: Ionization chamber. The Dosimetry of Ionization Radiation. Volume II 175 (1987)
32. J. E. Burns and D.T. Burns, “ Comments on Ion recombination corrections for plane-parallel and thimble chambles in electron and photon radiation.” Phys. Med. Biol. 38, 1986-1988 (1993).
33. K. Derikum and M. Roos, “ Measurement of saturation correction factors of thimble-type ionization chambers in pulsed photon beams. “ Phys. Med. Biol. 38, 755-763 (1993).
34. C. ZanKowski and E. B. Podgorsak, “ Determination of saturation charge and collection efficiency for ionization chambers in continuous beams.” Med. Phys. 25, 908-915 ( 1998).
35. IAEA, The Use of Plane Parallel ionization chambers in High Energy Electron and Photon Beams: An International Code of Practice for Dosimetry, Technical Report Series, Vol. 381 ( IAEA, Vienna, 1997).
36. J. W. Boag and E. Hochhauser, and O. A. Balk, “ The effect of free-electron collection on the recombination correction to ionization measurements of pulsed radiation. “ Phys. Med. Biol. 41, 885-897 ( 1996 ).
37. Boutillon : “ Perturbation correction for the ionometric determination of absorbed dose in a graphite phantom for Co-60 gamma rays”, Phys. Med. Biol. Vol. 28, No. 4, 375-388 ,( 1983 ).
38. M. Boutillon and M. -T. Niatel: ” A Study of a Graphite Cavity Chamber for Absolute Exposure Measurements of Co-60 Gamma Rays.” Metrologia, 9, 139-46, (1973) .
39. M. Boutillon : “ Measuring Conditions Used For The Calibration of Ionization Chambers at BIPM.” Report BIPM-96. (1996).
40. M. Boutillon: Comite Intenational des Poids et Measures, Proces-Verbvaux 36, 64, (1968)
41. ICRU-31, International Commission on Radiation Units and Measurements, Washington, DC. 1979: Average Energy Required to Produce Ion Pair.
42. International Organization for Standardization,. “ Guide to the Expression of Uncertainty in Measurement, ISO, Switzerland. (1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔